Loading…
The effect of enhanced carotenoid content of transgenic maize grain on fungal colonization and mycotoxin content
Novel strategies that address vitamin A deficiency have been developed, such as high-carotenoid maize, a biofortified transgenic maize line rich in carotenoids generated by genetic transformation. The South African white maize inbred (M37W), which is devoid of carotenoids, was engineered to accumula...
Saved in:
Published in: | Mycotoxin research 2016-11, Vol.32 (4), p.221-228 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel strategies that address vitamin A deficiency have been developed, such as high-carotenoid maize, a biofortified transgenic maize line rich in carotenoids generated by genetic transformation. The South African white maize inbred (M37W), which is devoid of carotenoids, was engineered to accumulate high levels of β-carotene (provitamin A), lutein, and zeaxanthin. Maize seeds contaminated with fumonisins and other mycotoxins pose a serious threat to both humans and livestock. During three consecutive harvests, the fungal incidence and the fumonisin and aflatoxin content of maize seeds grown in an experimental field in Catalonia (Northeastern Spain) were evaluated. Fungal infection was similar in high-carotenoid maize and its isogenic line, with
Fusarium verticillioides
being the most prevalent fungus in all the harvests. Neither
Aspergillus
spp. nor aflatoxin contamination was found. Fumonisin levels were lower in high carotenoid than in its isogenic line, but this reduction was statistically significant in only 2 of the 3 years of study. Our results suggest that high carotenoid content reduces fumonisin levels in maize grains. |
---|---|
ISSN: | 0178-7888 1867-1632 |
DOI: | 10.1007/s12550-016-0254-x |