Loading…
Differential mechanistic investigation of protective effects from imperatorin and sec-O-glucosylhamaudol against arsenic trioxide-induced cytotoxicity in vitro
The clinical use of arsenic trioxide (As2O3) for treating acute promyelocytic leukemia (APL) is limited due to its severe cardiotoxicity. The possible mechanisms of As2O3-induced cardiotoxicity include DNA fragmentation, reactive oxygen species (ROS) generation, cardiac ion channel changes and apopt...
Saved in:
Published in: | Toxicology in vitro 2016-12, Vol.37, p.97-105 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The clinical use of arsenic trioxide (As2O3) for treating acute promyelocytic leukemia (APL) is limited due to its severe cardiotoxicity. The possible mechanisms of As2O3-induced cardiotoxicity include DNA fragmentation, reactive oxygen species (ROS) generation, cardiac ion channel changes and apoptosis. The present study is designed to investigate the protective effects of imperatorin and sec-O-glucosylhamaudol and to explore their mechanistic involvement in As2O3-induced cytotoxicity.
Cell viability assay, Lactate dehydrogenase (LDH) release, Acridine orange/ethidium bromide (AO/EB) double staining, Caspase-3 activity assay, ROS generation, cellular calcium levels, mRNA expression levels by qRT-PCR and protein expression levels by Western blotting were measured in H9c2 cells in combination with As2O3 and imperatorin or sec-O-glucosylhamaudol.
We observed that H9c2 cells treated with imperatorin or sec-O-glucosylhamaudol were more resistant to As2O3-induced cell death. Both imperatorin and sec-O-glucosylhamaudol reduced H9c2 cell apoptosis, but both imperatorin and sec-O-glucosylhamaudol had no effects on Caspase-3 activity and intracellular calcium accumulation. Furthermore, imperatorin was capable of suppressing ROS generation, while sec-O-glucosylhamaudol did not show this effect. Moreover, imperatorin and sec-O-glucosylhamaudol triggered Nrf2 activation, which resulted in upregulation of downstream phase II metabolic enzymes and antioxidant protein/enzyme, probably offering cellular protection to As2O3-induced cardiotoxicity via the Nrf2 signal pathway.
Imperatorin and sec-O-glucosylhamaudol can ameliorate As2O3-induced cytotoxicity and apoptosis in H9c2 cells, the mechanisms probably related to antioxidation. As2O3 in combination with imperatorin or sec-O-glucosylhamaudol could be considered as a novel strategy to expand the clinical application of As2O3.
•The new pharmacological action of traditional Chinese medicine Radix Saposhnikoviae•Imperatorin can ameliorate As2O3-induced cytotoxicity and apoptosis in H9c2 cells.•sec-O-glucosylhamaudol can ameliorate As2O3-induced cytotoxicity and apoptosis in H9c2 cells.•A novel strategy to expand the clinical application of As2O3 |
---|---|
ISSN: | 0887-2333 1879-3177 |
DOI: | 10.1016/j.tiv.2016.09.002 |