Loading…

Phenotypic divergence despite high gene flow in chokka squid Loligo reynaudii (Cephalopoda: Loliginidae): implications for fishery management

The commercially important chokka squid Loligo reynaudii occurring in South African waters is currently managed on a single-unit stock hypothesis. We tested this assumption through a spatial comparison of the morphology throughout the distributional range of the species. Forty-three morphometric cha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Marine Biological Association of the United Kingdom 2016-11, Vol.96 (7), p.1507-1525
Main Authors: Van Der Vyver, J.S.F., Sauer, W.H.H., McKeown, N.J., Yemane, D., Shaw, P.W., Lipinski, M.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The commercially important chokka squid Loligo reynaudii occurring in South African waters is currently managed on a single-unit stock hypothesis. We tested this assumption through a spatial comparison of the morphology throughout the distributional range of the species. Forty-three morphometric characters were measured from 1079 chokka collected off the south coast of South Africa, the west coast of South Africa, and southern Angola. While no significant differences were found in the hard body parts, results from classification analysis showed that though all four types of morphometric attributes (soft body parts, beaks, statoliths, sucker rings) resulted in some separation, the most consistent separation of samples from the three regions was based on soft body part morphometric characters. On average, though dependent on the model, the overall correct classification rate ranged from 0.68–0.99 for males and 0.7–0.99 for females in all three regions. Previous DNA analysis had revealed some genetic differences between west coast and south coast samples, suggesting the confluence of the cold Benguela and warm Agulhas current may act as the approximate point of a phenotypic and possible genetic breakpoint. Finer scale genetic analysis of samples collected across the Benguela–Agulhas confluence reported no significant genetic structuring in this area suggesting environmental heterogeneity and not restriction of genetic flow/isolation as the primary driver of the observed phenotypic divergence.
ISSN:0025-3154
1469-7769
DOI:10.1017/S0025315415001794