Loading…

Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors

In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of unce...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2016-09, Vol.61 (17), p.6281-6296
Main Authors: Labarbe, Rudi, Janssens, Guillaume, Sterpin, Edmond
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3
container_end_page 6296
container_issue 17
container_start_page 6281
container_title Physics in medicine & biology
container_volume 61
creator Labarbe, Rudi
Janssens, Guillaume
Sterpin, Edmond
description In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.
doi_str_mv 10.1088/0031-9155/61/17/6281
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837321858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812887185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEotvCGyDkE-IS1pM4scMNqlKQKnGBs-U44-JqYxvbWbRPySvhdJeKAxKcRra__5_x_FX1AugboEJsKW2hHqDrtj1sgW_7RsCjagNtD3Xf9fRxtXlAzqrzlO4oBRANe1qdNZwNrBw21c-rlO2ssnW3JJSCLpMUUFtjNVmcxpiVdflQHqOaMWNMxPhI1KRCtnskOaLK8yqLWIedcm61so6E6LN3JH_DqMKBLOl0v7d7T6Jyt0hmVGmJuKoTUW4i79UBk1WucAYjlvZviQphZ3UZbTXzJGFewj2csg_hfm7_AyPBGH1Mz6onRu0SPj_Vi-rrh6svlx_rm8_Xny7f3dS67CfXhikhOs55o1B3omccNFNAGVXGmEaMMIoWBoadQRyEHswwGdNy1g9mRKbai-r10bd88_uCKcvZJo27sgD0S5IgWt42IDrxHyg0QvDCFpQdUR19ShGNDLGkEw8SqFxTl2ukco1U9iCByzX1Int56rCMM04Pot8xF4AeAeuDvPNLdGU3__J89RdJmMc_IBkm0_4C9-_KEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812887185</pqid></control><display><type>article</type><title>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Labarbe, Rudi ; Janssens, Guillaume ; Sterpin, Edmond</creator><creatorcontrib>Labarbe, Rudi ; Janssens, Guillaume ; Sterpin, Edmond</creatorcontrib><description>In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/61/17/6281</identifier><identifier>PMID: 27494118</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Bayes Theorem ; Bayesian statistics ; Humans ; image-guided radiotherapy ; Models, Theoretical ; proton therapy ; Proton Therapy - methods ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy Setup Errors - prevention &amp; control ; Uncertainty</subject><ispartof>Physics in medicine &amp; biology, 2016-09, Vol.61 (17), p.6281-6296</ispartof><rights>2016 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27494118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labarbe, Rudi</creatorcontrib><creatorcontrib>Janssens, Guillaume</creatorcontrib><creatorcontrib>Sterpin, Edmond</creatorcontrib><title>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.</description><subject>Bayes Theorem</subject><subject>Bayesian statistics</subject><subject>Humans</subject><subject>image-guided radiotherapy</subject><subject>Models, Theoretical</subject><subject>proton therapy</subject><subject>Proton Therapy - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy Setup Errors - prevention &amp; control</subject><subject>Uncertainty</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEotvCGyDkE-IS1pM4scMNqlKQKnGBs-U44-JqYxvbWbRPySvhdJeKAxKcRra__5_x_FX1AugboEJsKW2hHqDrtj1sgW_7RsCjagNtD3Xf9fRxtXlAzqrzlO4oBRANe1qdNZwNrBw21c-rlO2ssnW3JJSCLpMUUFtjNVmcxpiVdflQHqOaMWNMxPhI1KRCtnskOaLK8yqLWIedcm61so6E6LN3JH_DqMKBLOl0v7d7T6Jyt0hmVGmJuKoTUW4i79UBk1WucAYjlvZviQphZ3UZbTXzJGFewj2csg_hfm7_AyPBGH1Mz6onRu0SPj_Vi-rrh6svlx_rm8_Xny7f3dS67CfXhikhOs55o1B3omccNFNAGVXGmEaMMIoWBoadQRyEHswwGdNy1g9mRKbai-r10bd88_uCKcvZJo27sgD0S5IgWt42IDrxHyg0QvDCFpQdUR19ShGNDLGkEw8SqFxTl2ukco1U9iCByzX1Int56rCMM04Pot8xF4AeAeuDvPNLdGU3__J89RdJmMc_IBkm0_4C9-_KEg</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Labarbe, Rudi</creator><creator>Janssens, Guillaume</creator><creator>Sterpin, Edmond</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160907</creationdate><title>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</title><author>Labarbe, Rudi ; Janssens, Guillaume ; Sterpin, Edmond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayes Theorem</topic><topic>Bayesian statistics</topic><topic>Humans</topic><topic>image-guided radiotherapy</topic><topic>Models, Theoretical</topic><topic>proton therapy</topic><topic>Proton Therapy - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy Setup Errors - prevention &amp; control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labarbe, Rudi</creatorcontrib><creatorcontrib>Janssens, Guillaume</creatorcontrib><creatorcontrib>Sterpin, Edmond</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labarbe, Rudi</au><au>Janssens, Guillaume</au><au>Sterpin, Edmond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2016-09-07</date><risdate>2016</risdate><volume>61</volume><issue>17</issue><spage>6281</spage><epage>6296</epage><pages>6281-6296</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27494118</pmid><doi>10.1088/0031-9155/61/17/6281</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2016-09, Vol.61 (17), p.6281-6296
issn 0031-9155
1361-6560
language eng
recordid cdi_proquest_miscellaneous_1837321858
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Bayes Theorem
Bayesian statistics
Humans
image-guided radiotherapy
Models, Theoretical
proton therapy
Proton Therapy - methods
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy Setup Errors - prevention & control
Uncertainty
title Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20patient%20specific%20uncertainty%20parameters%20for%20adaptive%20treatment%20re-planning%20in%20proton%20therapy%20using%20in%20vivo%20range%20measurements%20and%20Bayesian%20inference:%20application%20to%20setup%20and%20stopping%20power%20errors&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Labarbe,%20Rudi&rft.date=2016-09-07&rft.volume=61&rft.issue=17&rft.spage=6281&rft.epage=6296&rft.pages=6281-6296&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/61/17/6281&rft_dat=%3Cproquest_pubme%3E1812887185%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812887185&rft_id=info:pmid/27494118&rfr_iscdi=true