Loading…
Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors
In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of unce...
Saved in:
Published in: | Physics in medicine & biology 2016-09, Vol.61 (17), p.6281-6296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3 |
container_end_page | 6296 |
container_issue | 17 |
container_start_page | 6281 |
container_title | Physics in medicine & biology |
container_volume | 61 |
creator | Labarbe, Rudi Janssens, Guillaume Sterpin, Edmond |
description | In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning. |
doi_str_mv | 10.1088/0031-9155/61/17/6281 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837321858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812887185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEotvCGyDkE-IS1pM4scMNqlKQKnGBs-U44-JqYxvbWbRPySvhdJeKAxKcRra__5_x_FX1AugboEJsKW2hHqDrtj1sgW_7RsCjagNtD3Xf9fRxtXlAzqrzlO4oBRANe1qdNZwNrBw21c-rlO2ssnW3JJSCLpMUUFtjNVmcxpiVdflQHqOaMWNMxPhI1KRCtnskOaLK8yqLWIedcm61so6E6LN3JH_DqMKBLOl0v7d7T6Jyt0hmVGmJuKoTUW4i79UBk1WucAYjlvZviQphZ3UZbTXzJGFewj2csg_hfm7_AyPBGH1Mz6onRu0SPj_Vi-rrh6svlx_rm8_Xny7f3dS67CfXhikhOs55o1B3omccNFNAGVXGmEaMMIoWBoadQRyEHswwGdNy1g9mRKbai-r10bd88_uCKcvZJo27sgD0S5IgWt42IDrxHyg0QvDCFpQdUR19ShGNDLGkEw8SqFxTl2ukco1U9iCByzX1Int56rCMM04Pot8xF4AeAeuDvPNLdGU3__J89RdJmMc_IBkm0_4C9-_KEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812887185</pqid></control><display><type>article</type><title>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Labarbe, Rudi ; Janssens, Guillaume ; Sterpin, Edmond</creator><creatorcontrib>Labarbe, Rudi ; Janssens, Guillaume ; Sterpin, Edmond</creatorcontrib><description>In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/61/17/6281</identifier><identifier>PMID: 27494118</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Bayes Theorem ; Bayesian statistics ; Humans ; image-guided radiotherapy ; Models, Theoretical ; proton therapy ; Proton Therapy - methods ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy Setup Errors - prevention & control ; Uncertainty</subject><ispartof>Physics in medicine & biology, 2016-09, Vol.61 (17), p.6281-6296</ispartof><rights>2016 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27494118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labarbe, Rudi</creatorcontrib><creatorcontrib>Janssens, Guillaume</creatorcontrib><creatorcontrib>Sterpin, Edmond</creatorcontrib><title>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.</description><subject>Bayes Theorem</subject><subject>Bayesian statistics</subject><subject>Humans</subject><subject>image-guided radiotherapy</subject><subject>Models, Theoretical</subject><subject>proton therapy</subject><subject>Proton Therapy - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy Setup Errors - prevention & control</subject><subject>Uncertainty</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhiMEotvCGyDkE-IS1pM4scMNqlKQKnGBs-U44-JqYxvbWbRPySvhdJeKAxKcRra__5_x_FX1AugboEJsKW2hHqDrtj1sgW_7RsCjagNtD3Xf9fRxtXlAzqrzlO4oBRANe1qdNZwNrBw21c-rlO2ssnW3JJSCLpMUUFtjNVmcxpiVdflQHqOaMWNMxPhI1KRCtnskOaLK8yqLWIedcm61so6E6LN3JH_DqMKBLOl0v7d7T6Jyt0hmVGmJuKoTUW4i79UBk1WucAYjlvZviQphZ3UZbTXzJGFewj2csg_hfm7_AyPBGH1Mz6onRu0SPj_Vi-rrh6svlx_rm8_Xny7f3dS67CfXhikhOs55o1B3omccNFNAGVXGmEaMMIoWBoadQRyEHswwGdNy1g9mRKbai-r10bd88_uCKcvZJo27sgD0S5IgWt42IDrxHyg0QvDCFpQdUR19ShGNDLGkEw8SqFxTl2ukco1U9iCByzX1Int56rCMM04Pot8xF4AeAeuDvPNLdGU3__J89RdJmMc_IBkm0_4C9-_KEg</recordid><startdate>20160907</startdate><enddate>20160907</enddate><creator>Labarbe, Rudi</creator><creator>Janssens, Guillaume</creator><creator>Sterpin, Edmond</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160907</creationdate><title>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</title><author>Labarbe, Rudi ; Janssens, Guillaume ; Sterpin, Edmond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayes Theorem</topic><topic>Bayesian statistics</topic><topic>Humans</topic><topic>image-guided radiotherapy</topic><topic>Models, Theoretical</topic><topic>proton therapy</topic><topic>Proton Therapy - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy Setup Errors - prevention & control</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labarbe, Rudi</creatorcontrib><creatorcontrib>Janssens, Guillaume</creatorcontrib><creatorcontrib>Sterpin, Edmond</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labarbe, Rudi</au><au>Janssens, Guillaume</au><au>Sterpin, Edmond</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2016-09-07</date><risdate>2016</risdate><volume>61</volume><issue>17</issue><spage>6281</spage><epage>6296</epage><pages>6281-6296</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>In proton therapy, quantification of the proton range uncertainty is important to achieve dose distribution compliance. The promising accuracy of prompt gamma imaging (PGI) suggests the development of a mathematical framework using the range measurements to convert population based estimates of uncertainties into patient specific estimates with the purpose of plan adaptation. We present here such framework using Bayesian inference. The sources of uncertainty were modeled by three parameters: setup bias m, random setup precision r and water equivalent path length bias u. The evolution of the expectation values E(m), E(r) and E(u) during the treatment was simulated. The expectation values converged towards the true simulation parameters after 5 and 10 fractions, for E(m) and E(u), respectively. E(r) settle on a constant value slightly lower than the true value after 10 fractions. In conclusion, the simulation showed that there is enough information in the frequency distribution of the range errors measured by PGI to estimate the expectation values and the confidence interval of the model parameters by Bayesian inference. The updated model parameters were used to compute patient specific lateral and local distal margins for adaptive re-planning.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27494118</pmid><doi>10.1088/0031-9155/61/17/6281</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2016-09, Vol.61 (17), p.6281-6296 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837321858 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Bayes Theorem Bayesian statistics Humans image-guided radiotherapy Models, Theoretical proton therapy Proton Therapy - methods Radiotherapy Planning, Computer-Assisted - methods Radiotherapy Setup Errors - prevention & control Uncertainty |
title | Estimating patient specific uncertainty parameters for adaptive treatment re-planning in proton therapy using in vivo range measurements and Bayesian inference: application to setup and stopping power errors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20patient%20specific%20uncertainty%20parameters%20for%20adaptive%20treatment%20re-planning%20in%20proton%20therapy%20using%20in%20vivo%20range%20measurements%20and%20Bayesian%20inference:%20application%20to%20setup%20and%20stopping%20power%20errors&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Labarbe,%20Rudi&rft.date=2016-09-07&rft.volume=61&rft.issue=17&rft.spage=6281&rft.epage=6296&rft.pages=6281-6296&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/61/17/6281&rft_dat=%3Cproquest_pubme%3E1812887185%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-f4a8857772aec586471c4a1040afff28b1b83194e5fee98c9f9dff37469fbe4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1812887185&rft_id=info:pmid/27494118&rfr_iscdi=true |