Loading…
Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors
Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous...
Saved in:
Published in: | Biochemical and biophysical research communications 2016-10, Vol.479 (4), p.820-826 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333 |
container_end_page | 826 |
container_issue | 4 |
container_start_page | 820 |
container_title | Biochemical and biophysical research communications |
container_volume | 479 |
creator | Kim, Kyung-Tai Song, Mi-Ryoung |
description | Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
•Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons. |
doi_str_mv | 10.1016/j.bbrc.2016.09.124 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837326119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X16315996</els_id><sourcerecordid>1835394058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1ERZfCH-CAcuSSMGMnXlvigqoWkFZwKRInLMeZbL3KxovtVOq_r5ddOCJOMyN980bzHmNvEBoElO93Td9H1_DSN6Ab5O0ztkLQUHOE9jlbAYCsucYfl-xlSjsAxFbqF-ySr6UCge2K_dz47X2u_Twsjobqa8juvrIu-wefHysX5hzDlKqZlhi2NHtX2XmotpM_T4eQac7eTlUYf1OlO5zQHGJ6xS5GOyV6fa5X7Pvtzd3153rz7dOX64-b2gmlc21tJ6zTSmstLR-46qRDC33Px7XTlhB4q8ozNIpODVxyq7nWSkhsB0FCiCv27qRbbv9aKGWz98nRNNmZwpIMKrEWXCLq_0E7oVvoVEH5CXUxpBRpNIfo9zY-GgRzjMDszDECc4zAgDYlgrL09qy_9Hsa_q788bwAH04AFUMePEWTnKe52O8juWyG4P-l_wRiKZfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835394058</pqid></control><display><type>article</type><title>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</title><source>ScienceDirect Journals</source><creator>Kim, Kyung-Tai ; Song, Mi-Ryoung</creator><creatorcontrib>Kim, Kyung-Tai ; Song, Mi-Ryoung</creatorcontrib><description>Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
•Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2016.09.124</identifier><identifier>PMID: 27680314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; Astrocytes - radiation effects ; Cell Differentiation - radiation effects ; Cell Line ; Light ; Mice ; Mice, Inbred C57BL ; Neural progenitors ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural Stem Cells - radiation effects ; Neurogenesis - physiology ; Neurogenesis - radiation effects ; Neuroglia - cytology ; Neuroglia - metabolism ; Neuroglia - radiation effects ; Neurons - cytology ; Neurons - metabolism ; Neurons - radiation effects ; Notch ; Protein Domains ; Receptor, Notch1 - chemistry ; Receptor, Notch1 - metabolism ; Receptor, Notch1 - radiation effects ; Signal Transduction</subject><ispartof>Biochemical and biophysical research communications, 2016-10, Vol.479 (4), p.820-826</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</citedby><cites>FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27680314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyung-Tai</creatorcontrib><creatorcontrib>Song, Mi-Ryoung</creatorcontrib><title>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
•Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.</description><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - radiation effects</subject><subject>Cell Differentiation - radiation effects</subject><subject>Cell Line</subject><subject>Light</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neural progenitors</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - radiation effects</subject><subject>Neurogenesis - physiology</subject><subject>Neurogenesis - radiation effects</subject><subject>Neuroglia - cytology</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - radiation effects</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons - radiation effects</subject><subject>Notch</subject><subject>Protein Domains</subject><subject>Receptor, Notch1 - chemistry</subject><subject>Receptor, Notch1 - metabolism</subject><subject>Receptor, Notch1 - radiation effects</subject><subject>Signal Transduction</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS1ERZfCH-CAcuSSMGMnXlvigqoWkFZwKRInLMeZbL3KxovtVOq_r5ddOCJOMyN980bzHmNvEBoElO93Td9H1_DSN6Ab5O0ztkLQUHOE9jlbAYCsucYfl-xlSjsAxFbqF-ySr6UCge2K_dz47X2u_Twsjobqa8juvrIu-wefHysX5hzDlKqZlhi2NHtX2XmotpM_T4eQac7eTlUYf1OlO5zQHGJ6xS5GOyV6fa5X7Pvtzd3153rz7dOX64-b2gmlc21tJ6zTSmstLR-46qRDC33Px7XTlhB4q8ozNIpODVxyq7nWSkhsB0FCiCv27qRbbv9aKGWz98nRNNmZwpIMKrEWXCLq_0E7oVvoVEH5CXUxpBRpNIfo9zY-GgRzjMDszDECc4zAgDYlgrL09qy_9Hsa_q788bwAH04AFUMePEWTnKe52O8juWyG4P-l_wRiKZfM</recordid><startdate>20161028</startdate><enddate>20161028</enddate><creator>Kim, Kyung-Tai</creator><creator>Song, Mi-Ryoung</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20161028</creationdate><title>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</title><author>Kim, Kyung-Tai ; Song, Mi-Ryoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - radiation effects</topic><topic>Cell Differentiation - radiation effects</topic><topic>Cell Line</topic><topic>Light</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neural progenitors</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - radiation effects</topic><topic>Neurogenesis - physiology</topic><topic>Neurogenesis - radiation effects</topic><topic>Neuroglia - cytology</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - radiation effects</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons - radiation effects</topic><topic>Notch</topic><topic>Protein Domains</topic><topic>Receptor, Notch1 - chemistry</topic><topic>Receptor, Notch1 - metabolism</topic><topic>Receptor, Notch1 - radiation effects</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyung-Tai</creatorcontrib><creatorcontrib>Song, Mi-Ryoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyung-Tai</au><au>Song, Mi-Ryoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2016-10-28</date><risdate>2016</risdate><volume>479</volume><issue>4</issue><spage>820</spage><epage>826</epage><pages>820-826</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.
•Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27680314</pmid><doi>10.1016/j.bbrc.2016.09.124</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2016-10, Vol.479 (4), p.820-826 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837326119 |
source | ScienceDirect Journals |
subjects | Animals Astrocytes - cytology Astrocytes - metabolism Astrocytes - radiation effects Cell Differentiation - radiation effects Cell Line Light Mice Mice, Inbred C57BL Neural progenitors Neural Stem Cells - cytology Neural Stem Cells - metabolism Neural Stem Cells - radiation effects Neurogenesis - physiology Neurogenesis - radiation effects Neuroglia - cytology Neuroglia - metabolism Neuroglia - radiation effects Neurons - cytology Neurons - metabolism Neurons - radiation effects Notch Protein Domains Receptor, Notch1 - chemistry Receptor, Notch1 - metabolism Receptor, Notch1 - radiation effects Signal Transduction |
title | Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-induced%20Notch%20activity%20controls%20neurogenic%20and%20gliogenic%20potential%20of%20neural%20progenitors&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Kim,%20Kyung-Tai&rft.date=2016-10-28&rft.volume=479&rft.issue=4&rft.spage=820&rft.epage=826&rft.pages=820-826&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2016.09.124&rft_dat=%3Cproquest_cross%3E1835394058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835394058&rft_id=info:pmid/27680314&rfr_iscdi=true |