Loading…

Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors

Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2016-10, Vol.479 (4), p.820-826
Main Authors: Kim, Kyung-Tai, Song, Mi-Ryoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333
cites cdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333
container_end_page 826
container_issue 4
container_start_page 820
container_title Biochemical and biophysical research communications
container_volume 479
creator Kim, Kyung-Tai
Song, Mi-Ryoung
description Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity. •Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.
doi_str_mv 10.1016/j.bbrc.2016.09.124
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837326119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X16315996</els_id><sourcerecordid>1835394058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1ERZfCH-CAcuSSMGMnXlvigqoWkFZwKRInLMeZbL3KxovtVOq_r5ddOCJOMyN980bzHmNvEBoElO93Td9H1_DSN6Ab5O0ztkLQUHOE9jlbAYCsucYfl-xlSjsAxFbqF-ySr6UCge2K_dz47X2u_Twsjobqa8juvrIu-wefHysX5hzDlKqZlhi2NHtX2XmotpM_T4eQac7eTlUYf1OlO5zQHGJ6xS5GOyV6fa5X7Pvtzd3153rz7dOX64-b2gmlc21tJ6zTSmstLR-46qRDC33Px7XTlhB4q8ozNIpODVxyq7nWSkhsB0FCiCv27qRbbv9aKGWz98nRNNmZwpIMKrEWXCLq_0E7oVvoVEH5CXUxpBRpNIfo9zY-GgRzjMDszDECc4zAgDYlgrL09qy_9Hsa_q788bwAH04AFUMePEWTnKe52O8juWyG4P-l_wRiKZfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835394058</pqid></control><display><type>article</type><title>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</title><source>ScienceDirect Journals</source><creator>Kim, Kyung-Tai ; Song, Mi-Ryoung</creator><creatorcontrib>Kim, Kyung-Tai ; Song, Mi-Ryoung</creatorcontrib><description>Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity. •Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2016.09.124</identifier><identifier>PMID: 27680314</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; Astrocytes - radiation effects ; Cell Differentiation - radiation effects ; Cell Line ; Light ; Mice ; Mice, Inbred C57BL ; Neural progenitors ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neural Stem Cells - radiation effects ; Neurogenesis - physiology ; Neurogenesis - radiation effects ; Neuroglia - cytology ; Neuroglia - metabolism ; Neuroglia - radiation effects ; Neurons - cytology ; Neurons - metabolism ; Neurons - radiation effects ; Notch ; Protein Domains ; Receptor, Notch1 - chemistry ; Receptor, Notch1 - metabolism ; Receptor, Notch1 - radiation effects ; Signal Transduction</subject><ispartof>Biochemical and biophysical research communications, 2016-10, Vol.479 (4), p.820-826</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</citedby><cites>FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27680314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kyung-Tai</creatorcontrib><creatorcontrib>Song, Mi-Ryoung</creatorcontrib><title>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity. •Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.</description><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Astrocytes - radiation effects</subject><subject>Cell Differentiation - radiation effects</subject><subject>Cell Line</subject><subject>Light</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neural progenitors</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neural Stem Cells - radiation effects</subject><subject>Neurogenesis - physiology</subject><subject>Neurogenesis - radiation effects</subject><subject>Neuroglia - cytology</subject><subject>Neuroglia - metabolism</subject><subject>Neuroglia - radiation effects</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Neurons - radiation effects</subject><subject>Notch</subject><subject>Protein Domains</subject><subject>Receptor, Notch1 - chemistry</subject><subject>Receptor, Notch1 - metabolism</subject><subject>Receptor, Notch1 - radiation effects</subject><subject>Signal Transduction</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS1ERZfCH-CAcuSSMGMnXlvigqoWkFZwKRInLMeZbL3KxovtVOq_r5ddOCJOMyN980bzHmNvEBoElO93Td9H1_DSN6Ab5O0ztkLQUHOE9jlbAYCsucYfl-xlSjsAxFbqF-ySr6UCge2K_dz47X2u_Twsjobqa8juvrIu-wefHysX5hzDlKqZlhi2NHtX2XmotpM_T4eQac7eTlUYf1OlO5zQHGJ6xS5GOyV6fa5X7Pvtzd3153rz7dOX64-b2gmlc21tJ6zTSmstLR-46qRDC33Px7XTlhB4q8ozNIpODVxyq7nWSkhsB0FCiCv27qRbbv9aKGWz98nRNNmZwpIMKrEWXCLq_0E7oVvoVEH5CXUxpBRpNIfo9zY-GgRzjMDszDECc4zAgDYlgrL09qy_9Hsa_q788bwAH04AFUMePEWTnKe52O8juWyG4P-l_wRiKZfM</recordid><startdate>20161028</startdate><enddate>20161028</enddate><creator>Kim, Kyung-Tai</creator><creator>Song, Mi-Ryoung</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20161028</creationdate><title>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</title><author>Kim, Kyung-Tai ; Song, Mi-Ryoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Astrocytes - radiation effects</topic><topic>Cell Differentiation - radiation effects</topic><topic>Cell Line</topic><topic>Light</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neural progenitors</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neural Stem Cells - radiation effects</topic><topic>Neurogenesis - physiology</topic><topic>Neurogenesis - radiation effects</topic><topic>Neuroglia - cytology</topic><topic>Neuroglia - metabolism</topic><topic>Neuroglia - radiation effects</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Neurons - radiation effects</topic><topic>Notch</topic><topic>Protein Domains</topic><topic>Receptor, Notch1 - chemistry</topic><topic>Receptor, Notch1 - metabolism</topic><topic>Receptor, Notch1 - radiation effects</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyung-Tai</creatorcontrib><creatorcontrib>Song, Mi-Ryoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyung-Tai</au><au>Song, Mi-Ryoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2016-10-28</date><risdate>2016</risdate><volume>479</volume><issue>4</issue><spage>820</spage><epage>826</epage><pages>820-826</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity. •Light-switchable transgene system allows spatiotemporal control of Notch activity.•Intermittent Notch activity changes neurogenic potential of neural progenitors.•Transient but not persistent Notch activity efficiently expands neural progeny and then neurons.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27680314</pmid><doi>10.1016/j.bbrc.2016.09.124</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2016-10, Vol.479 (4), p.820-826
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_1837326119
source ScienceDirect Journals
subjects Animals
Astrocytes - cytology
Astrocytes - metabolism
Astrocytes - radiation effects
Cell Differentiation - radiation effects
Cell Line
Light
Mice
Mice, Inbred C57BL
Neural progenitors
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neural Stem Cells - radiation effects
Neurogenesis - physiology
Neurogenesis - radiation effects
Neuroglia - cytology
Neuroglia - metabolism
Neuroglia - radiation effects
Neurons - cytology
Neurons - metabolism
Neurons - radiation effects
Notch
Protein Domains
Receptor, Notch1 - chemistry
Receptor, Notch1 - metabolism
Receptor, Notch1 - radiation effects
Signal Transduction
title Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-induced%20Notch%20activity%20controls%20neurogenic%20and%20gliogenic%20potential%20of%20neural%20progenitors&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Kim,%20Kyung-Tai&rft.date=2016-10-28&rft.volume=479&rft.issue=4&rft.spage=820&rft.epage=826&rft.pages=820-826&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2016.09.124&rft_dat=%3Cproquest_cross%3E1835394058%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-aa53ac989996a2d2856c1a0bb2f7c9ae10248006ef358d262a929983614d3e333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1835394058&rft_id=info:pmid/27680314&rfr_iscdi=true