Loading…

Suppression of hepatocyte apoptosis and induction of DNA synthesis by the rat and mouse hepatocarcinogen diethylhexylphlathate (DEHP) and the mouse hepatocarcinogen 1,4-dichlorobenzene (DCB)

Nongenotoxic rodent hepatocarcinogens do not damage DNA but cause liver tumours in the rat and mouse, associated with the induction of hepatic DNA synthesis. Previously, we have demonstrated that nongenotoxic hepatocarcinogens such as phenobarbitone and the peroxisome proliferator (PP), nafenopin, a...

Full description

Saved in:
Bibliographic Details
Published in:Archives of toxicology 1998-12, Vol.72 (12), p.784-790
Main Authors: JAMES, N. H, SOAMES, A. R, ROBERTS, R. A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nongenotoxic rodent hepatocarcinogens do not damage DNA but cause liver tumours in the rat and mouse, associated with the induction of hepatic DNA synthesis. Previously, we have demonstrated that nongenotoxic hepatocarcinogens such as phenobarbitone and the peroxisome proliferator (PP), nafenopin, also suppress rat hepatocyte apoptosis. The nongenotoxic chemicals 1,4-dichlorobenzene (DCB) and the PP, diethylhexyl phthalate (DEHP), both induce high levels of DNA synthesis in rat liver in vivo, but only DEHP is hepatocarcinogenic in this species. Here, we investigate whether the difference in rat carcinogenicity of these two hepatic mitogens may be due to differences in their ability to suppress hepatocyte apoptosis. In rat hepatocytes in vitro, MEHP (the active metabolite of DEHP) induced DNA synthesis 2.5-fold (P = 0.001) and suppressed 10- and 4-fold, respectively both spontaneous (P = 0.0008) and transforming growth factor beta1 (TGFbeta1)-induced (P = 0.0001) apoptosis. DCB gave a small (1.7-fold) increase in DNA synthesis (P = 0.03) and a small (1.7- to 2-fold) suppression of both spontaneous (P = 0.022) and TGFbeta1-induced (P = 0.015) apoptosis. We next analysed the induction of DNA synthesis and the suppression of apoptosis in rat liver in vivo. Both DEHP and DCB were able to induce DNA synthesis although, as seen in vitro, the induction by DCB (4.2-fold; P = 0.023) was less marked than that with DEHP (13.4-fold; P = 0.007). Similarly, DEHP and DCB were both able to suppress rat hepatocyte apoptosis in vivo but the magnitude of the suppression was comparable; apoptosis was reduced to undetectable levels in four out of five animals with DCB and three out of five with DEHP. Since both chemicals suppressed apoptosis and induced DNA synthesis in rat liver but, overall, DCB was less potent, the disparate hepatocarcinogenic potential of these two chemicals could arise from differences in the magnitude of growth perturbation. To test this hypothesis, we repeated the studies in mouse, a species where both DCB and DEHP are hepatocarcinogenic. Both in vitro and in vivo, DCB and DEHP/MEHP were able to suppress apoptosis and induce hepatocyte DNA synthesis in the mouse with comparable potencies. The data support the hypothesis that the carcinogenicity of nongenotoxic hepatocarcinogens is associated strongly with the ability to perturb hepatocyte growth regulation. However, the ability to effect such changes is not unique to nongenotoxic carcinogens and is commo
ISSN:0340-5761
1432-0738
DOI:10.1007/s002040050574