Loading…
Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons
A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2002-02, Vol.33 (4), p.587-600 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533 |
---|---|
cites | cdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533 |
container_end_page | 600 |
container_issue | 4 |
container_start_page | 587 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 33 |
creator | Taddese, Abraha Bean, Bruce P |
description | A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing. |
doi_str_mv | 10.1016/S0896-6273(02)00574-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18390692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627302005743</els_id><sourcerecordid>18390692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-BCUgiD6MJpNJJnkqslotFAV330Nm5sZNmUnWZLJQ-uWb_UMLffHpvvzuuefcg9BbSj5TQsWXFZFKVKJu2UdSfyKEt03FnqEFJaqtGqrUc7R4QM7Qq5RuCKENV_QlOqNUcsFZvUB3q9zNmwhpE8YBr8Lg8oSXOUbwM7YxTPiP2bphvMVX3vSz25nZ-b8P4MZ4D2PC36LbQcKrbfCz8RBywpcu7slg8Tp3UJTMNLlxNPEW_4Icg0-v0QtrxgRvTvMcrS-_r5c_q-vfP66WX6-rnks-V0xIWgtBGbdcdAyA2JLJDsp2QlnZccWMJY0sYXlPO1kr4IY2xrRMtpyxc_ThKLuN4V-GNOvJpR6KlYNRTSVTRKi6gO-fgDchR1-sacoJawWpqSoUP1J9DClFsHob3VRiaUr0vhp9qEbv_65JrQ_V6L2Ndyf13E0wPG6duijAxREoD4Wdg6hT78D3MLgI_ayH4P5z4h5yzJ8d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503760219</pqid></control><display><type>article</type><title>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Taddese, Abraha ; Bean, Bruce P</creator><creatorcontrib>Taddese, Abraha ; Bean, Bruce P</creatorcontrib><description>A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00574-3</identifier><identifier>PMID: 11856532</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Animals, Newborn ; Biological Clocks - drug effects ; Biological Clocks - physiology ; Cell Size - physiology ; Circadian Rhythm - physiology ; Dendrites - metabolism ; Dendrites - ultrastructure ; Dose-Response Relationship, Drug ; Electrodes ; Experiments ; Histamine - metabolism ; Hypothalamic Area, Lateral - cytology ; Hypothalamic Area, Lateral - metabolism ; Mathematical models ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Rats ; Sodium - metabolism ; Sodium Channels - drug effects ; Sodium Channels - metabolism ; Tetrodotoxin - pharmacology</subject><ispartof>Neuron (Cambridge, Mass.), 2002-02, Vol.33 (4), p.587-600</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited Feb 14, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</citedby><cites>FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11856532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taddese, Abraha</creatorcontrib><creatorcontrib>Bean, Bruce P</creatorcontrib><title>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Clocks - drug effects</subject><subject>Biological Clocks - physiology</subject><subject>Cell Size - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>Histamine - metabolism</subject><subject>Hypothalamic Area, Lateral - cytology</subject><subject>Hypothalamic Area, Lateral - metabolism</subject><subject>Mathematical models</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - drug effects</subject><subject>Sodium Channels - metabolism</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYModq1-BCUgiD6MJpNJJnkqslotFAV330Nm5sZNmUnWZLJQ-uWb_UMLffHpvvzuuefcg9BbSj5TQsWXFZFKVKJu2UdSfyKEt03FnqEFJaqtGqrUc7R4QM7Qq5RuCKENV_QlOqNUcsFZvUB3q9zNmwhpE8YBr8Lg8oSXOUbwM7YxTPiP2bphvMVX3vSz25nZ-b8P4MZ4D2PC36LbQcKrbfCz8RBywpcu7slg8Tp3UJTMNLlxNPEW_4Icg0-v0QtrxgRvTvMcrS-_r5c_q-vfP66WX6-rnks-V0xIWgtBGbdcdAyA2JLJDsp2QlnZccWMJY0sYXlPO1kr4IY2xrRMtpyxc_ThKLuN4V-GNOvJpR6KlYNRTSVTRKi6gO-fgDchR1-sacoJawWpqSoUP1J9DClFsHob3VRiaUr0vhp9qEbv_65JrQ_V6L2Ndyf13E0wPG6duijAxREoD4Wdg6hT78D3MLgI_ayH4P5z4h5yzJ8d</recordid><startdate>20020214</startdate><enddate>20020214</enddate><creator>Taddese, Abraha</creator><creator>Bean, Bruce P</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20020214</creationdate><title>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</title><author>Taddese, Abraha ; Bean, Bruce P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Clocks - drug effects</topic><topic>Biological Clocks - physiology</topic><topic>Cell Size - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>Histamine - metabolism</topic><topic>Hypothalamic Area, Lateral - cytology</topic><topic>Hypothalamic Area, Lateral - metabolism</topic><topic>Mathematical models</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - drug effects</topic><topic>Sodium Channels - metabolism</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taddese, Abraha</creatorcontrib><creatorcontrib>Bean, Bruce P</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taddese, Abraha</au><au>Bean, Bruce P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-02-14</date><risdate>2002</risdate><volume>33</volume><issue>4</issue><spage>587</spage><epage>600</epage><pages>587-600</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11856532</pmid><doi>10.1016/S0896-6273(02)00574-3</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2002-02, Vol.33 (4), p.587-600 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_18390692 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Action Potentials - drug effects Action Potentials - physiology Animals Animals, Newborn Biological Clocks - drug effects Biological Clocks - physiology Cell Size - physiology Circadian Rhythm - physiology Dendrites - metabolism Dendrites - ultrastructure Dose-Response Relationship, Drug Electrodes Experiments Histamine - metabolism Hypothalamic Area, Lateral - cytology Hypothalamic Area, Lateral - metabolism Mathematical models Neurons Neurons - drug effects Neurons - metabolism Rats Sodium - metabolism Sodium Channels - drug effects Sodium Channels - metabolism Tetrodotoxin - pharmacology |
title | Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subthreshold%20Sodium%20Current%20from%20Rapidly%20Inactivating%20Sodium%20Channels%20Drives%20Spontaneous%20Firing%20of%20Tuberomammillary%20Neurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Taddese,%20Abraha&rft.date=2002-02-14&rft.volume=33&rft.issue=4&rft.spage=587&rft.epage=600&rft.pages=587-600&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00574-3&rft_dat=%3Cproquest_cross%3E18390692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503760219&rft_id=info:pmid/11856532&rfr_iscdi=true |