Loading…

Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons

A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2002-02, Vol.33 (4), p.587-600
Main Authors: Taddese, Abraha, Bean, Bruce P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533
cites cdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533
container_end_page 600
container_issue 4
container_start_page 587
container_title Neuron (Cambridge, Mass.)
container_volume 33
creator Taddese, Abraha
Bean, Bruce P
description A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.
doi_str_mv 10.1016/S0896-6273(02)00574-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18390692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627302005743</els_id><sourcerecordid>18390692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYModq1-BCUgiD6MJpNJJnkqslotFAV330Nm5sZNmUnWZLJQ-uWb_UMLffHpvvzuuefcg9BbSj5TQsWXFZFKVKJu2UdSfyKEt03FnqEFJaqtGqrUc7R4QM7Qq5RuCKENV_QlOqNUcsFZvUB3q9zNmwhpE8YBr8Lg8oSXOUbwM7YxTPiP2bphvMVX3vSz25nZ-b8P4MZ4D2PC36LbQcKrbfCz8RBywpcu7slg8Tp3UJTMNLlxNPEW_4Icg0-v0QtrxgRvTvMcrS-_r5c_q-vfP66WX6-rnks-V0xIWgtBGbdcdAyA2JLJDsp2QlnZccWMJY0sYXlPO1kr4IY2xrRMtpyxc_ThKLuN4V-GNOvJpR6KlYNRTSVTRKi6gO-fgDchR1-sacoJawWpqSoUP1J9DClFsHob3VRiaUr0vhp9qEbv_65JrQ_V6L2Ndyf13E0wPG6duijAxREoD4Wdg6hT78D3MLgI_ayH4P5z4h5yzJ8d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503760219</pqid></control><display><type>article</type><title>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Taddese, Abraha ; Bean, Bruce P</creator><creatorcontrib>Taddese, Abraha ; Bean, Bruce P</creatorcontrib><description>A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00574-3</identifier><identifier>PMID: 11856532</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Animals, Newborn ; Biological Clocks - drug effects ; Biological Clocks - physiology ; Cell Size - physiology ; Circadian Rhythm - physiology ; Dendrites - metabolism ; Dendrites - ultrastructure ; Dose-Response Relationship, Drug ; Electrodes ; Experiments ; Histamine - metabolism ; Hypothalamic Area, Lateral - cytology ; Hypothalamic Area, Lateral - metabolism ; Mathematical models ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Rats ; Sodium - metabolism ; Sodium Channels - drug effects ; Sodium Channels - metabolism ; Tetrodotoxin - pharmacology</subject><ispartof>Neuron (Cambridge, Mass.), 2002-02, Vol.33 (4), p.587-600</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited Feb 14, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</citedby><cites>FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11856532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taddese, Abraha</creatorcontrib><creatorcontrib>Bean, Bruce P</creatorcontrib><title>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Biological Clocks - drug effects</subject><subject>Biological Clocks - physiology</subject><subject>Cell Size - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - ultrastructure</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrodes</subject><subject>Experiments</subject><subject>Histamine - metabolism</subject><subject>Hypothalamic Area, Lateral - cytology</subject><subject>Hypothalamic Area, Lateral - metabolism</subject><subject>Mathematical models</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - drug effects</subject><subject>Sodium Channels - metabolism</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYModq1-BCUgiD6MJpNJJnkqslotFAV330Nm5sZNmUnWZLJQ-uWb_UMLffHpvvzuuefcg9BbSj5TQsWXFZFKVKJu2UdSfyKEt03FnqEFJaqtGqrUc7R4QM7Qq5RuCKENV_QlOqNUcsFZvUB3q9zNmwhpE8YBr8Lg8oSXOUbwM7YxTPiP2bphvMVX3vSz25nZ-b8P4MZ4D2PC36LbQcKrbfCz8RBywpcu7slg8Tp3UJTMNLlxNPEW_4Icg0-v0QtrxgRvTvMcrS-_r5c_q-vfP66WX6-rnks-V0xIWgtBGbdcdAyA2JLJDsp2QlnZccWMJY0sYXlPO1kr4IY2xrRMtpyxc_ThKLuN4V-GNOvJpR6KlYNRTSVTRKi6gO-fgDchR1-sacoJawWpqSoUP1J9DClFsHob3VRiaUr0vhp9qEbv_65JrQ_V6L2Ndyf13E0wPG6duijAxREoD4Wdg6hT78D3MLgI_ayH4P5z4h5yzJ8d</recordid><startdate>20020214</startdate><enddate>20020214</enddate><creator>Taddese, Abraha</creator><creator>Bean, Bruce P</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20020214</creationdate><title>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</title><author>Taddese, Abraha ; Bean, Bruce P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Biological Clocks - drug effects</topic><topic>Biological Clocks - physiology</topic><topic>Cell Size - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - ultrastructure</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrodes</topic><topic>Experiments</topic><topic>Histamine - metabolism</topic><topic>Hypothalamic Area, Lateral - cytology</topic><topic>Hypothalamic Area, Lateral - metabolism</topic><topic>Mathematical models</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - drug effects</topic><topic>Sodium Channels - metabolism</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taddese, Abraha</creatorcontrib><creatorcontrib>Bean, Bruce P</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taddese, Abraha</au><au>Bean, Bruce P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-02-14</date><risdate>2002</risdate><volume>33</volume><issue>4</issue><spage>587</spage><epage>600</epage><pages>587-600</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>A role for “persistent,” subthreshold, TTX-sensitive sodium current in driving the pacemaking of many central neurons has been proposed, but this has been impossible to test pharmacologically. Using isolated tuberomammillary neurons, we assessed the role of subthreshold sodium current in pacemaking by performing voltage-clamp experiments using a cell's own pacemaking cycle as voltage command. TTX-sensitive sodium current flows throughout the pacemaking cycle, even at voltages as negative as −70 mV, and this current is sufficient to drive spontaneous firing. When sodium channels underlying transient current were driven into slow inactivation by rapid stimulation, persistent current decreased in parallel, suggesting that persistent sodium current originates from subthreshold gating of the same sodium channels that underlie the phasic sodium current. This behavior of sodium channels may endow all neurons with an intrinsic propensity for rhythmic, spontaneous firing.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11856532</pmid><doi>10.1016/S0896-6273(02)00574-3</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2002-02, Vol.33 (4), p.587-600
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_18390692
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Animals, Newborn
Biological Clocks - drug effects
Biological Clocks - physiology
Cell Size - physiology
Circadian Rhythm - physiology
Dendrites - metabolism
Dendrites - ultrastructure
Dose-Response Relationship, Drug
Electrodes
Experiments
Histamine - metabolism
Hypothalamic Area, Lateral - cytology
Hypothalamic Area, Lateral - metabolism
Mathematical models
Neurons
Neurons - drug effects
Neurons - metabolism
Rats
Sodium - metabolism
Sodium Channels - drug effects
Sodium Channels - metabolism
Tetrodotoxin - pharmacology
title Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subthreshold%20Sodium%20Current%20from%20Rapidly%20Inactivating%20Sodium%20Channels%20Drives%20Spontaneous%20Firing%20of%20Tuberomammillary%20Neurons&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Taddese,%20Abraha&rft.date=2002-02-14&rft.volume=33&rft.issue=4&rft.spage=587&rft.epage=600&rft.pages=587-600&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00574-3&rft_dat=%3Cproquest_cross%3E18390692%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-3681266135f56b3ee0f627fd9fb69f8b593af0488965c1b829e5a14aa7387533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503760219&rft_id=info:pmid/11856532&rfr_iscdi=true