Loading…
Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: Neuroanatomical and pathophysiological considerations
Abstract Obsessive-compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. For patients suffering from severe refractory OCD, deep brain stimulation (DBS) of the subthalamic nucleus (STN) has be...
Saved in:
Published in: | European neuropsychopharmacology 2016-12, Vol.26 (12), p.1909-1919 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Obsessive-compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. For patients suffering from severe refractory OCD, deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been applied. Reviewing the literature of the last years we believe that through its central position within the cortico-basal ganglia-thalamocortical circuits, the STN has a coordinating role in decision-making and action-selection mechanisms. Dysfunctional information-processing at the level of the STN is responsible for some of the core symptoms of OCD. Research confirms an electrophysiological dysfunction in the associative and limbic (non-motor) parts of the STN. Compared to Parkinson׳s disease patients, STN neurons in OCD exhibit a lower firing rate, less frequent but longer bursts, increased burst activity in the anterior ventromedial area, an asymmetrical left-sided burst distribution, and a predominant oscillatory activity in the δ-band. Moreover, there is direct evidence for the involvement of the STN in both checking behavior and OCD symptoms, which are both related to changes in electrophysiological activity in the non-motor STN. Through a combination of mechanisms, DBS of the STN seems to interrupt the disturbed information-processing, leading to a normalization of connectivity within the cortico-basal ganglia-thalamocortical circuits and consequently to a reduction in symptoms. In conclusion, based on the STN׳s strategic position within cortico-basal ganglia-thalamocortical circuits and its involvement in action-selection mechanisms that are responsible for some of the core symptoms of OCD, the STN is a mechanism-based target for DBS in OCD. |
---|---|
ISSN: | 0924-977X 1873-7862 |
DOI: | 10.1016/j.euroneuro.2016.10.011 |