Loading…
A two step model aimed at delivering antisense oligonucleotides in targeted cells
To be efficient in vivo antisense oligonucleotides must reach the targeted cells and then cross the cellular membrane. We propose a two step system where the oligonucleotide is first electrostatically bound to a peptide coupled to a ligand of a cellular receptor. A complex is formed which allows the...
Saved in:
Published in: | Biochemical and biophysical research communications 2002-04, Vol.293 (1), p.18-22 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To be efficient in vivo antisense oligonucleotides must reach the targeted cells and then cross the cellular membrane. We propose a two step system where the oligonucleotide is first electrostatically bound to a peptide coupled to a ligand of a cellular receptor. A complex is formed which allows the oligonucleotide to be bound to the membrane of the targeted cells. These oligonucleotides are then delivered inside the cells by the subsequent use of a transfection agent. As a reductionist model of peptide coupled to a ligand we have used a lipopeptide and characterized by a filter elution assay the stoichiometry between the peptide and the oligonucleotide in the complexes. Using HeLa cultured cells we have shown that addition of these complexes to the cells triggers the oligonucleotide binding to the cell membrane. The subsequent addition of dendrimers allows these antisense oligonucleotides to inhibit a reporter gene inside the cells. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/S0006-291X(02)00177-8 |