Loading…

Continuous online processing of fecal- and ingesta-contaminated poultry carcasses using an acidified sodium chlorite antimicrobial intervention

The objective of this study was to determine the effectiveness of the combined use of an inside-outside-bird-washer for the removal of visible contamination and an online acidified sodium chlorite (ASC) spray system in reducing microbial levels on contaminated poultry carcasses. Specifically, we att...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food protection 2001-06, Vol.64 (6), p.807-812
Main Authors: KEMP, G. Kere, ALDRICH, M. L, GUERRA, M. L, SCHNEIDER, K. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to determine the effectiveness of the combined use of an inside-outside-bird-washer for the removal of visible contamination and an online acidified sodium chlorite (ASC) spray system in reducing microbial levels on contaminated poultry carcasses. Specifically, we attempted to determine if this technique (referred to as continuous online processing [COP]) would (i) eliminate the need for offline reprocessing of contaminated carcasses, (ii) meet Zero Fecal Tolerance standards, and (iii) attain significant reductions in titers of some of the commonly found bacterial species. Carcasses were sampled for Ercherichia coli, Salmonella, and Campylobacter at five stations along the processing lines in a series of five commercial plant studies to compare the efficacy of the COP system to that of offline processing. The microbiological quality of fecally contaminated carcasses was found to be significantly better following COP treatment (E. coli, 0.59 log10 CFU/ml; Salmonella, 10.0% incidence) than after standard offline reprocessing (E. coli, 2.37 log10 CFU/ml; Salmonella, 31.6% incidence). Zero Fecal Tolerance requirements were met by all but 2 (0.2%) of the 1.127 carcasses following COP. COP also significantly reduced the titers of Campylobacter; residual titers were 1.14 log10 CFU/ml (49.1% incidence) following COP, compared to 2.89 log10 CFU/ml (73.2% incidence) in carcasses that underwent offline reprocessing. These results support the combined use of an inside-outside-bird-washer for the removal of visible contamination and an online ASC spray system to reduce microbial levels in commercially processed poultry.
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028x-64.6.807