Loading…
Balancing Inflammation: Computational Design of Small-Molecule Toll-like Receptor Modulators
As essential proteins of the innate immune system, Toll-like receptors (TLRs) are involved in a plethora of physiological pathologies and their modulation is an ongoing quest in the field of drug discovery. Although TLRs recognize an unusually broad range of different molecular patterns, only a few...
Saved in:
Published in: | Trends in pharmacological sciences (Regular ed.) 2017-02, Vol.38 (2), p.155-168 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As essential proteins of the innate immune system, Toll-like receptors (TLRs) are involved in a plethora of physiological pathologies and their modulation is an ongoing quest in the field of drug discovery. Although TLRs recognize an unusually broad range of different molecular patterns, only a few small-molecule TLR modulators have been reported to date. Recent advances in crystallography and in silico techniques provide promising opportunities for TLR investigations and drug design. Here, three application areas for computational approaches are considered: (i) exploration of TLR structure and activation; (ii) understanding TLR modulation; and (iii) TLR drug discovery. By providing an overview on state-of-the-art computational methods, we highlight the value of molecular modeling in mechanistically understanding TLR function and guiding drug design. |
---|---|
ISSN: | 0165-6147 1873-3735 |
DOI: | 10.1016/j.tips.2016.10.007 |