Loading…

Effect of dose rate of azoxystrobin and metconazole on the development of Fusarium head blight and the accumulation of deoxynivalenol (DON) in wheat grain

Glasshouse studies were undertaken to determine if fungicides used for the control of Fusarium head blight (FHB) result in elevated concentrations of the trichothecene mycotoxin, deoxynivalenol (DON) in harvested wheat grain. Metconazole and azoxystrobin, at double, full, half or quarter the manufac...

Full description

Saved in:
Bibliographic Details
Published in:European journal of plant pathology 2002-06, Vol.108 (5), p.469-478
Main Authors: PIRGOZLIEV, S. R, EDWARDS, S. G, HARE, M. C, JENKINSON, P
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glasshouse studies were undertaken to determine if fungicides used for the control of Fusarium head blight (FHB) result in elevated concentrations of the trichothecene mycotoxin, deoxynivalenol (DON) in harvested wheat grain. Metconazole and azoxystrobin, at double, full, half or quarter the manufacturer's recommended dose rate, were applied to ears of wheat (cv. Cadenza), artificially inoculated with conidia of either Fusarium culmorum or F. graminearum. Metconazole demonstrated high activity against both pathogens, reducing significantly the severity of FHB and the DON concentrations at each of the four dose rates tested when compared to untreated controls. Applications of azoxystrobin significantly reduced FHB and DON compared to unsprayed controls. However, their effectiveness was significantly less than that of metconazole and no dose rate response was observed. Quantification of the amount of trichothecene-producing Fusarium present in harvested grain was determined using a competitive PCR assay based on primers derived from the trichodiene synthase gene (Tri5). Simple linear regression analyses revealed strong relationships between the amount of trichothecene-producing Fusarium present in grain and the DON concentrations (r^sup 2^=0.72-0.97). It is concluded that fungicides, applied for the control of FHB, affect DON concentrations indirectly by influencing the amount of trichothecene-producing Fusarium species present in wheat grain. There was no evidence that fungicide applications directly increase the concentration of DON in grain.[PUBLICATION ABSTRACT]
ISSN:0929-1873
1573-8469
DOI:10.1023/A:1016010812514