Loading…

Monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma

Purpose To determine the utility of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging (DWI) models in differentiating between minimal fat angiomyolipoma (MFAML) and clear cell renal cell carcinoma (ccRCC). Materials and Me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2017-07, Vol.46 (1), p.240-247
Main Authors: Li, Haojie, Liang, Lili, Li, Anqin, Hu, Yao, Hu, Daoyu, Li, Zhen, Kamel, Ihab R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4244-8e55d1ac78936662b5378d0a1c80df47de26c66b1893072e26a3d0f8f2b0d5cc3
cites
container_end_page 247
container_issue 1
container_start_page 240
container_title Journal of magnetic resonance imaging
container_volume 46
creator Li, Haojie
Liang, Lili
Li, Anqin
Hu, Yao
Hu, Daoyu
Li, Zhen
Kamel, Ihab R.
description Purpose To determine the utility of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging (DWI) models in differentiating between minimal fat angiomyolipoma (MFAML) and clear cell renal cell carcinoma (ccRCC). Materials and Methods One hundred thirty‐one patients with pathologically confirmed MFAML (n = 27) or ccRCC (n = 104) underwent multi‐b value DWI (0∼1700 s/mm2) imaging at 3.0 Tesla MRI. An isotropic apparent diffusion coefficient (ADC) was calculated from diffusion‐weighted images by using a monoexponential model. A pseudo‐ADC (Dp), true ADC (Dt), and perfusion fraction (fp) were calculated from diffusion‐weighted images by using a biexponential model. A water molecular diffusion heterogeneity index (α) and distributed diffusion coefficient (DDC) were calculated from diffusion‐weighted images by using a stretched exponential model. All parameters were compared between MFAML and ccRCC by using the Student's t test. Receiver operating characteristic and intraclass correlation coefficient analysis were used for statistical evaluations. Results ADC, Dt, and α values were significantly lower in the MFAML group than in the ccRCC group (P 
doi_str_mv 10.1002/jmri.25524
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1841801659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841801659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4244-8e55d1ac78936662b5378d0a1c80df47de26c66b1893072e26a3d0f8f2b0d5cc3</originalsourceid><addsrcrecordid>eNpdkU1u1TAUhS0EoqUwYQHIEhMGpNhO7DjMUFWgVSsEgnHk2DevfiT2q520vBlLYFGshJX0vrQgYORzdT4f3R9CnnJ2yBkTr9Zj8odCSlHdI_tcClEIqdV91EyWBdes3iOPcl4zxpqmkg_Jnqi1bLQs98nP8xgifNvEAGHyZnhJO_9PaYKjeUow2Qtw9C-LOt_3c_Yx_Pr-4xr86mJCwI9m5cOKjtHBkF_Tj7NBejKTvwKMjqNJXyFl2se0BEBa0qbdH5QYawcwiVoYUJpkfcA_SxejD5g-0N5MWK8waxsHv0H7MXnQmyHDk7v3gHx5e_z56H1x9uHdydGbs8JWoqoKDVI6bmytm1IpJTpZ1toxw61mrq9qB0JZpTqOPqsFVqZ0rNe96JiT1pYH5MVt7ibFyxny1I4-7zo1AeKcW64r3DZXskH0-X_oOs4J50OqYQp3r5RE6tkdNXcjuHaTcMK0bX_fBwF-C1z7AbZ_fM7a3eXb3eXb5fLt6fmnk0WVNwJGp4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906853665</pqid></control><display><type>article</type><title>Monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Haojie ; Liang, Lili ; Li, Anqin ; Hu, Yao ; Hu, Daoyu ; Li, Zhen ; Kamel, Ihab R.</creator><creatorcontrib>Li, Haojie ; Liang, Lili ; Li, Anqin ; Hu, Yao ; Hu, Daoyu ; Li, Zhen ; Kamel, Ihab R.</creatorcontrib><description>Purpose To determine the utility of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging (DWI) models in differentiating between minimal fat angiomyolipoma (MFAML) and clear cell renal cell carcinoma (ccRCC). Materials and Methods One hundred thirty‐one patients with pathologically confirmed MFAML (n = 27) or ccRCC (n = 104) underwent multi‐b value DWI (0∼1700 s/mm2) imaging at 3.0 Tesla MRI. An isotropic apparent diffusion coefficient (ADC) was calculated from diffusion‐weighted images by using a monoexponential model. A pseudo‐ADC (Dp), true ADC (Dt), and perfusion fraction (fp) were calculated from diffusion‐weighted images by using a biexponential model. A water molecular diffusion heterogeneity index (α) and distributed diffusion coefficient (DDC) were calculated from diffusion‐weighted images by using a stretched exponential model. All parameters were compared between MFAML and ccRCC by using the Student's t test. Receiver operating characteristic and intraclass correlation coefficient analysis were used for statistical evaluations. Results ADC, Dt, and α values were significantly lower in the MFAML group than in the ccRCC group (P &lt; 0.001). Dp, fp, and DDC values were slightly higher in the MFAML group than in the ccRCC group; however, the difference was not significant (P = 0.136, 0.090, and 0.424, respectively). The AUC values for both α (0.953) and Dt (0.964) were significantly higher than those for ADC (0860), Dp (0.605), fp (0.596), and DDC (0.477) in the differentiation of MFAML from ccRCC (P &lt; 0.001). Conclusion Water molecular diffusion heterogeneity index (α) and Dt may provide additional information and could lead to improved differentiation with better sensitivity and specificity between MFAML and ccRCC compared with conventional diffusion parameters. Level of Evidence: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:240–247</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.25524</identifier><identifier>PMID: 27859853</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aged ; Algorithms ; Angiomyolipoma ; Angiomyolipoma - diagnostic imaging ; Angiomyolipoma - pathology ; Biomarkers ; Carcinoma, Renal Cell - diagnostic imaging ; Carcinoma, Renal Cell - pathology ; clear cell renal cell carcinoma ; Clear cell-type renal cell carcinoma ; Computer Simulation ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Diagnosis, Differential ; Differentiation ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging - methods ; diffusion‐weighted imaging ; exponential models ; Female ; Heterogeneity ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Kidney cancer ; Kidney Neoplasms - diagnostic imaging ; Kidney Neoplasms - pathology ; Magnetic resonance imaging ; Male ; Mathematical models ; Middle Aged ; Models, Biological ; Models, Statistical ; Molecular diffusion ; Motion ; Perfusion ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Journal of magnetic resonance imaging, 2017-07, Vol.46 (1), p.240-247</ispartof><rights>2016 International Society for Magnetic Resonance in Medicine</rights><rights>2016 International Society for Magnetic Resonance in Medicine.</rights><rights>2017 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4244-8e55d1ac78936662b5378d0a1c80df47de26c66b1893072e26a3d0f8f2b0d5cc3</citedby><orcidid>0000-0001-8037-4245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27859853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haojie</creatorcontrib><creatorcontrib>Liang, Lili</creatorcontrib><creatorcontrib>Li, Anqin</creatorcontrib><creatorcontrib>Hu, Yao</creatorcontrib><creatorcontrib>Hu, Daoyu</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Kamel, Ihab R.</creatorcontrib><title>Monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Purpose To determine the utility of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging (DWI) models in differentiating between minimal fat angiomyolipoma (MFAML) and clear cell renal cell carcinoma (ccRCC). Materials and Methods One hundred thirty‐one patients with pathologically confirmed MFAML (n = 27) or ccRCC (n = 104) underwent multi‐b value DWI (0∼1700 s/mm2) imaging at 3.0 Tesla MRI. An isotropic apparent diffusion coefficient (ADC) was calculated from diffusion‐weighted images by using a monoexponential model. A pseudo‐ADC (Dp), true ADC (Dt), and perfusion fraction (fp) were calculated from diffusion‐weighted images by using a biexponential model. A water molecular diffusion heterogeneity index (α) and distributed diffusion coefficient (DDC) were calculated from diffusion‐weighted images by using a stretched exponential model. All parameters were compared between MFAML and ccRCC by using the Student's t test. Receiver operating characteristic and intraclass correlation coefficient analysis were used for statistical evaluations. Results ADC, Dt, and α values were significantly lower in the MFAML group than in the ccRCC group (P &lt; 0.001). Dp, fp, and DDC values were slightly higher in the MFAML group than in the ccRCC group; however, the difference was not significant (P = 0.136, 0.090, and 0.424, respectively). The AUC values for both α (0.953) and Dt (0.964) were significantly higher than those for ADC (0860), Dp (0.605), fp (0.596), and DDC (0.477) in the differentiation of MFAML from ccRCC (P &lt; 0.001). Conclusion Water molecular diffusion heterogeneity index (α) and Dt may provide additional information and could lead to improved differentiation with better sensitivity and specificity between MFAML and ccRCC compared with conventional diffusion parameters. Level of Evidence: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:240–247</description><subject>Aged</subject><subject>Algorithms</subject><subject>Angiomyolipoma</subject><subject>Angiomyolipoma - diagnostic imaging</subject><subject>Angiomyolipoma - pathology</subject><subject>Biomarkers</subject><subject>Carcinoma, Renal Cell - diagnostic imaging</subject><subject>Carcinoma, Renal Cell - pathology</subject><subject>clear cell renal cell carcinoma</subject><subject>Clear cell-type renal cell carcinoma</subject><subject>Computer Simulation</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Diagnosis, Differential</subject><subject>Differentiation</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>diffusion‐weighted imaging</subject><subject>exponential models</subject><subject>Female</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - diagnostic imaging</subject><subject>Kidney Neoplasms - pathology</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Molecular diffusion</subject><subject>Motion</subject><subject>Perfusion</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1u1TAUhS0EoqUwYQHIEhMGpNhO7DjMUFWgVSsEgnHk2DevfiT2q520vBlLYFGshJX0vrQgYORzdT4f3R9CnnJ2yBkTr9Zj8odCSlHdI_tcClEIqdV91EyWBdes3iOPcl4zxpqmkg_Jnqi1bLQs98nP8xgifNvEAGHyZnhJO_9PaYKjeUow2Qtw9C-LOt_3c_Yx_Pr-4xr86mJCwI9m5cOKjtHBkF_Tj7NBejKTvwKMjqNJXyFl2se0BEBa0qbdH5QYawcwiVoYUJpkfcA_SxejD5g-0N5MWK8waxsHv0H7MXnQmyHDk7v3gHx5e_z56H1x9uHdydGbs8JWoqoKDVI6bmytm1IpJTpZ1toxw61mrq9qB0JZpTqOPqsFVqZ0rNe96JiT1pYH5MVt7ibFyxny1I4-7zo1AeKcW64r3DZXskH0-X_oOs4J50OqYQp3r5RE6tkdNXcjuHaTcMK0bX_fBwF-C1z7AbZ_fM7a3eXb3eXb5fLt6fmnk0WVNwJGp4E</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Li, Haojie</creator><creator>Liang, Lili</creator><creator>Li, Anqin</creator><creator>Hu, Yao</creator><creator>Hu, Daoyu</creator><creator>Li, Zhen</creator><creator>Kamel, Ihab R.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8037-4245</orcidid></search><sort><creationdate>201707</creationdate><title>Monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma</title><author>Li, Haojie ; Liang, Lili ; Li, Anqin ; Hu, Yao ; Hu, Daoyu ; Li, Zhen ; Kamel, Ihab R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4244-8e55d1ac78936662b5378d0a1c80df47de26c66b1893072e26a3d0f8f2b0d5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aged</topic><topic>Algorithms</topic><topic>Angiomyolipoma</topic><topic>Angiomyolipoma - diagnostic imaging</topic><topic>Angiomyolipoma - pathology</topic><topic>Biomarkers</topic><topic>Carcinoma, Renal Cell - diagnostic imaging</topic><topic>Carcinoma, Renal Cell - pathology</topic><topic>clear cell renal cell carcinoma</topic><topic>Clear cell-type renal cell carcinoma</topic><topic>Computer Simulation</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Diagnosis, Differential</topic><topic>Differentiation</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>diffusion‐weighted imaging</topic><topic>exponential models</topic><topic>Female</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - diagnostic imaging</topic><topic>Kidney Neoplasms - pathology</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Molecular diffusion</topic><topic>Motion</topic><topic>Perfusion</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haojie</creatorcontrib><creatorcontrib>Liang, Lili</creatorcontrib><creatorcontrib>Li, Anqin</creatorcontrib><creatorcontrib>Hu, Yao</creatorcontrib><creatorcontrib>Hu, Daoyu</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Kamel, Ihab R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haojie</au><au>Liang, Lili</au><au>Li, Anqin</au><au>Hu, Yao</au><au>Hu, Daoyu</au><au>Li, Zhen</au><au>Kamel, Ihab R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2017-07</date><risdate>2017</risdate><volume>46</volume><issue>1</issue><spage>240</spage><epage>247</epage><pages>240-247</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To determine the utility of various diffusion parameters obtained from monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging (DWI) models in differentiating between minimal fat angiomyolipoma (MFAML) and clear cell renal cell carcinoma (ccRCC). Materials and Methods One hundred thirty‐one patients with pathologically confirmed MFAML (n = 27) or ccRCC (n = 104) underwent multi‐b value DWI (0∼1700 s/mm2) imaging at 3.0 Tesla MRI. An isotropic apparent diffusion coefficient (ADC) was calculated from diffusion‐weighted images by using a monoexponential model. A pseudo‐ADC (Dp), true ADC (Dt), and perfusion fraction (fp) were calculated from diffusion‐weighted images by using a biexponential model. A water molecular diffusion heterogeneity index (α) and distributed diffusion coefficient (DDC) were calculated from diffusion‐weighted images by using a stretched exponential model. All parameters were compared between MFAML and ccRCC by using the Student's t test. Receiver operating characteristic and intraclass correlation coefficient analysis were used for statistical evaluations. Results ADC, Dt, and α values were significantly lower in the MFAML group than in the ccRCC group (P &lt; 0.001). Dp, fp, and DDC values were slightly higher in the MFAML group than in the ccRCC group; however, the difference was not significant (P = 0.136, 0.090, and 0.424, respectively). The AUC values for both α (0.953) and Dt (0.964) were significantly higher than those for ADC (0860), Dp (0.605), fp (0.596), and DDC (0.477) in the differentiation of MFAML from ccRCC (P &lt; 0.001). Conclusion Water molecular diffusion heterogeneity index (α) and Dt may provide additional information and could lead to improved differentiation with better sensitivity and specificity between MFAML and ccRCC compared with conventional diffusion parameters. Level of Evidence: 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:240–247</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27859853</pmid><doi>10.1002/jmri.25524</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8037-4245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2017-07, Vol.46 (1), p.240-247
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_1841801659
source Wiley-Blackwell Read & Publish Collection
subjects Aged
Algorithms
Angiomyolipoma
Angiomyolipoma - diagnostic imaging
Angiomyolipoma - pathology
Biomarkers
Carcinoma, Renal Cell - diagnostic imaging
Carcinoma, Renal Cell - pathology
clear cell renal cell carcinoma
Clear cell-type renal cell carcinoma
Computer Simulation
Correlation analysis
Correlation coefficient
Correlation coefficients
Diagnosis, Differential
Differentiation
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
diffusion‐weighted imaging
exponential models
Female
Heterogeneity
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Kidney cancer
Kidney Neoplasms - diagnostic imaging
Kidney Neoplasms - pathology
Magnetic resonance imaging
Male
Mathematical models
Middle Aged
Models, Biological
Models, Statistical
Molecular diffusion
Motion
Perfusion
Reproducibility of Results
Sensitivity and Specificity
title Monoexponential, biexponential, and stretched exponential diffusion‐weighted imaging models: Quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monoexponential,%20biexponential,%20and%20stretched%20exponential%20diffusion%E2%80%90weighted%20imaging%20models:%20Quantitative%20biomarkers%20for%20differentiating%20renal%20clear%20cell%20carcinoma%20and%20minimal%20fat%20angiomyolipoma&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Li,%20Haojie&rft.date=2017-07&rft.volume=46&rft.issue=1&rft.spage=240&rft.epage=247&rft.pages=240-247&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.25524&rft_dat=%3Cproquest_pubme%3E1841801659%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4244-8e55d1ac78936662b5378d0a1c80df47de26c66b1893072e26a3d0f8f2b0d5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1906853665&rft_id=info:pmid/27859853&rfr_iscdi=true