Loading…
Ocean waves propagating over a porous seabed of finite thickness
In the past few decades, considerable efforts have been devoted to the phenomenon of wave-seabed interaction. However, conventional investigations for determining wave characteristics have been focused on the wave nonlinearity. On the other hand, most previous works have been only concerned with the...
Saved in:
Published in: | Ocean engineering 2002-09, Vol.29 (12), p.1577-1601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the past few decades, considerable efforts have been devoted to the phenomenon of wave-seabed interaction. However, conventional investigations for determining wave characteristics have been focused on the wave nonlinearity. On the other hand, most previous works have been only concerned with the seabed response under the wave pressure, which was obtained from the assumption of a rigid seabed. In this paper, the inertia forces and employing a complex wave number are considered in the whole problem. Based on Biot’s poro-elastic theory, the problem of wave-seabed interaction is first treated analytically for a homogeneous bed of finite thickness and a new wave dispersion relationship is also obtained, in which the soil characteristics are included. The numerical results indicate that the effects of soil parameters significantly affect the wave characteristics (such as the damping of water wave, wave length and wave pressure). Furthermore, the effects of inertia forces on the wave-induced seabed response cannot always be ignored under certain combination of wave and soil conditions. |
---|---|
ISSN: | 0029-8018 1873-5258 |
DOI: | 10.1016/S0029-8018(01)00078-6 |