Loading…

Heterodimerisation between VEGFR-1 and VEGFR-2 and not the homodimers of VEGFR-1 inhibit VEGFR-2 activity

Abstract Vascular endothelial growth factor (VEGF) signaling is tightly regulated by specific VEGF receptors (VEGF-R). Recently, we identified heterodimerisation between VEGFR-1 and VEGFR-2 (VEGFR1–2 ) to regulate VEGFR-2 function. However, both the mechanism of action and the relationship with VEGF...

Full description

Saved in:
Bibliographic Details
Published in:Vascular pharmacology 2017-01, Vol.88, p.11-20
Main Authors: Cai, Meng, Wang, Keqing, Murdoch, Colin E, Gu, Yuchun, Ahmed, Asif
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Vascular endothelial growth factor (VEGF) signaling is tightly regulated by specific VEGF receptors (VEGF-R). Recently, we identified heterodimerisation between VEGFR-1 and VEGFR-2 (VEGFR1–2 ) to regulate VEGFR-2 function. However, both the mechanism of action and the relationship with VEGFR-1 homodimers remain unknown. The current study shows that activation of VEGFR1–2 , but not VEGFR-1 homodimers, inhibits VEGFR-2 receptor phosphorylation under VEGF stimulation in human endothelial cells. Furthermore, inhibition of phosphatidylinositol 3-kinase (PI3K) increases VEGFR-2 phosphorylation under VEGF stimulation. More importantly, inhibition of PI3K pathway abolishes the VEGFR1–2 mediated inhibition of VEGFR-2 phosphorylation. We further demonstrate that inhibition of PI3K pathway promotes capillary tube formation. Finally, the inhibition of PI3K abrogates the inhibition of in vitro angiogenesis mediated by VEGFR1–2 heterodimers. These findings demonstrate that VEGFR1–2 heterodimers and not VEGFR-1 homodimers inhibit VEGF-VEGFR-2 signaling by suppressing VEGFR-2 phosphorylation via PI3K pathway.
ISSN:1537-1891
1879-3649
DOI:10.1016/j.vph.2016.11.007