Loading…

Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images

Purpose Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation. Methods Fifteen thresholding methods were implemented for BCC lesion se...

Full description

Saved in:
Bibliographic Details
Published in:Skin research and technology 2017-08, Vol.23 (3), p.416-428
Main Authors: Kaur, R., LeAnder, R., Mishra, N. K., Hagerty, J. R., Kasmi, R., Stanley, R. J., Celebi, M. E., Stoecker, W. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03
cites cdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03
container_end_page 428
container_issue 3
container_start_page 416
container_title Skin research and technology
container_volume 23
creator Kaur, R.
LeAnder, R.
Mishra, N. K.
Hagerty, J. R.
Kasmi, R.
Stanley, R. J.
Celebi, M. E.
Stoecker, W. V.
description Purpose Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation. Methods Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio. Results On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics. Conclusion The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.
doi_str_mv 10.1111/srt.12352
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1844353476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844353476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk4P_gMS8KKHbkmbpMlRhr9gIOgEPYU0TbaOtplJi-y_N3PTg2AOLzz48H3vfQA4x2iM45sE341xmtH0AAwxQyhBnLBDMEQCiSSn6dsAnISwQghRgbNjMEhzLlJGxBC8z5fehKWry6pdwMZ0S1cGaJ2HtQmVa2Ewi8a0neq2jbOwUEHVUJs6FuV11bpGwaqFpfGNC9qtN7Bq1MKEU3BkVR3M2f4fgde72_n0IZk93T9Ob2aJzmiWJoJluigKgTThBLHYZjnOkRII29QwbTUlJDWWW2W1QDnnqshVaRnnnDKLshG42uWuvfvoTehkU4Xtfqo1rg8Sc0LiJJKziF7-QVeu923cTmKBWVRJBY3U9Y7S3oXgjZVrH0_yG4mR3PqW0bf89h3Zi31iXzSm_CV_BEdgsgM-q9ps_k-SL8_zXeQXRY-J5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916111595</pqid></control><display><type>article</type><title>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Kaur, R. ; LeAnder, R. ; Mishra, N. K. ; Hagerty, J. R. ; Kasmi, R. ; Stanley, R. J. ; Celebi, M. E. ; Stoecker, W. V.</creator><creatorcontrib>Kaur, R. ; LeAnder, R. ; Mishra, N. K. ; Hagerty, J. R. ; Kasmi, R. ; Stanley, R. J. ; Celebi, M. E. ; Stoecker, W. V.</creatorcontrib><description>Purpose Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation. Methods Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio. Results On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics. Conclusion The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.</description><identifier>ISSN: 0909-752X</identifier><identifier>EISSN: 1600-0846</identifier><identifier>DOI: 10.1111/srt.12352</identifier><identifier>PMID: 27892649</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Basal cell carcinoma ; Borders ; Carcinoma, Basal Cell - classification ; Carcinoma, Basal Cell - diagnostic imaging ; Carcinoma, Basal Cell - pathology ; Classification ; dermoscopy ; Dermoscopy - instrumentation ; Dermoscopy - methods ; Error analysis ; Errors ; Huang method ; Humans ; image analysis ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Isodata method ; lesion segmentation ; Li method ; Melanoma - pathology ; Otsu method ; Pattern Recognition, Automated - methods ; Shanbhag method ; Skin cancer ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology ; Test sets ; thresholding ; Vignetting</subject><ispartof>Skin research and technology, 2017-08, Vol.23 (3), p.416-428</ispartof><rights>2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</citedby><cites>FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsrt.12352$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsrt.12352$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12352$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27892649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, R.</creatorcontrib><creatorcontrib>LeAnder, R.</creatorcontrib><creatorcontrib>Mishra, N. K.</creatorcontrib><creatorcontrib>Hagerty, J. R.</creatorcontrib><creatorcontrib>Kasmi, R.</creatorcontrib><creatorcontrib>Stanley, R. J.</creatorcontrib><creatorcontrib>Celebi, M. E.</creatorcontrib><creatorcontrib>Stoecker, W. V.</creatorcontrib><title>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</title><title>Skin research and technology</title><addtitle>Skin Res Technol</addtitle><description>Purpose Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation. Methods Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio. Results On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics. Conclusion The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.</description><subject>Algorithms</subject><subject>Basal cell carcinoma</subject><subject>Borders</subject><subject>Carcinoma, Basal Cell - classification</subject><subject>Carcinoma, Basal Cell - diagnostic imaging</subject><subject>Carcinoma, Basal Cell - pathology</subject><subject>Classification</subject><subject>dermoscopy</subject><subject>Dermoscopy - instrumentation</subject><subject>Dermoscopy - methods</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Huang method</subject><subject>Humans</subject><subject>image analysis</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Isodata method</subject><subject>lesion segmentation</subject><subject>Li method</subject><subject>Melanoma - pathology</subject><subject>Otsu method</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Shanbhag method</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><subject>Test sets</subject><subject>thresholding</subject><subject>Vignetting</subject><issn>0909-752X</issn><issn>1600-0846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk4P_gMS8KKHbkmbpMlRhr9gIOgEPYU0TbaOtplJi-y_N3PTg2AOLzz48H3vfQA4x2iM45sE341xmtH0AAwxQyhBnLBDMEQCiSSn6dsAnISwQghRgbNjMEhzLlJGxBC8z5fehKWry6pdwMZ0S1cGaJ2HtQmVa2Ewi8a0neq2jbOwUEHVUJs6FuV11bpGwaqFpfGNC9qtN7Bq1MKEU3BkVR3M2f4fgde72_n0IZk93T9Ob2aJzmiWJoJluigKgTThBLHYZjnOkRII29QwbTUlJDWWW2W1QDnnqshVaRnnnDKLshG42uWuvfvoTehkU4Xtfqo1rg8Sc0LiJJKziF7-QVeu923cTmKBWVRJBY3U9Y7S3oXgjZVrH0_yG4mR3PqW0bf89h3Zi31iXzSm_CV_BEdgsgM-q9ps_k-SL8_zXeQXRY-J5w</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kaur, R.</creator><creator>LeAnder, R.</creator><creator>Mishra, N. K.</creator><creator>Hagerty, J. R.</creator><creator>Kasmi, R.</creator><creator>Stanley, R. J.</creator><creator>Celebi, M. E.</creator><creator>Stoecker, W. V.</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</title><author>Kaur, R. ; LeAnder, R. ; Mishra, N. K. ; Hagerty, J. R. ; Kasmi, R. ; Stanley, R. J. ; Celebi, M. E. ; Stoecker, W. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Basal cell carcinoma</topic><topic>Borders</topic><topic>Carcinoma, Basal Cell - classification</topic><topic>Carcinoma, Basal Cell - diagnostic imaging</topic><topic>Carcinoma, Basal Cell - pathology</topic><topic>Classification</topic><topic>dermoscopy</topic><topic>Dermoscopy - instrumentation</topic><topic>Dermoscopy - methods</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Huang method</topic><topic>Humans</topic><topic>image analysis</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Isodata method</topic><topic>lesion segmentation</topic><topic>Li method</topic><topic>Melanoma - pathology</topic><topic>Otsu method</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Shanbhag method</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><topic>Test sets</topic><topic>thresholding</topic><topic>Vignetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, R.</creatorcontrib><creatorcontrib>LeAnder, R.</creatorcontrib><creatorcontrib>Mishra, N. K.</creatorcontrib><creatorcontrib>Hagerty, J. R.</creatorcontrib><creatorcontrib>Kasmi, R.</creatorcontrib><creatorcontrib>Stanley, R. J.</creatorcontrib><creatorcontrib>Celebi, M. E.</creatorcontrib><creatorcontrib>Stoecker, W. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Skin research and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaur, R.</au><au>LeAnder, R.</au><au>Mishra, N. K.</au><au>Hagerty, J. R.</au><au>Kasmi, R.</au><au>Stanley, R. J.</au><au>Celebi, M. E.</au><au>Stoecker, W. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</atitle><jtitle>Skin research and technology</jtitle><addtitle>Skin Res Technol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>23</volume><issue>3</issue><spage>416</spage><epage>428</epage><pages>416-428</pages><issn>0909-752X</issn><eissn>1600-0846</eissn><abstract>Purpose Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation. Methods Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio. Results On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics. Conclusion The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>27892649</pmid><doi>10.1111/srt.12352</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0909-752X
ispartof Skin research and technology, 2017-08, Vol.23 (3), p.416-428
issn 0909-752X
1600-0846
language eng
recordid cdi_proquest_miscellaneous_1844353476
source Open Access: Wiley-Blackwell Open Access Journals
subjects Algorithms
Basal cell carcinoma
Borders
Carcinoma, Basal Cell - classification
Carcinoma, Basal Cell - diagnostic imaging
Carcinoma, Basal Cell - pathology
Classification
dermoscopy
Dermoscopy - instrumentation
Dermoscopy - methods
Error analysis
Errors
Huang method
Humans
image analysis
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Isodata method
lesion segmentation
Li method
Melanoma - pathology
Otsu method
Pattern Recognition, Automated - methods
Shanbhag method
Skin cancer
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Test sets
thresholding
Vignetting
title Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thresholding%20methods%20for%20lesion%20segmentation%20of%20basal%20cell%20carcinoma%20in%20dermoscopy%20images&rft.jtitle=Skin%20research%20and%20technology&rft.au=Kaur,%20R.&rft.date=2017-08&rft.volume=23&rft.issue=3&rft.spage=416&rft.epage=428&rft.pages=416-428&rft.issn=0909-752X&rft.eissn=1600-0846&rft_id=info:doi/10.1111/srt.12352&rft_dat=%3Cproquest_24P%3E1844353476%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916111595&rft_id=info:pmid/27892649&rfr_iscdi=true