Loading…
Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images
Purpose Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation. Methods Fifteen thresholding methods were implemented for BCC lesion se...
Saved in:
Published in: | Skin research and technology 2017-08, Vol.23 (3), p.416-428 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03 |
container_end_page | 428 |
container_issue | 3 |
container_start_page | 416 |
container_title | Skin research and technology |
container_volume | 23 |
creator | Kaur, R. LeAnder, R. Mishra, N. K. Hagerty, J. R. Kasmi, R. Stanley, R. J. Celebi, M. E. Stoecker, W. V. |
description | Purpose
Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation.
Methods
Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio.
Results
On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics.
Conclusion
The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work. |
doi_str_mv | 10.1111/srt.12352 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1844353476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844353476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk4P_gMS8KKHbkmbpMlRhr9gIOgEPYU0TbaOtplJi-y_N3PTg2AOLzz48H3vfQA4x2iM45sE341xmtH0AAwxQyhBnLBDMEQCiSSn6dsAnISwQghRgbNjMEhzLlJGxBC8z5fehKWry6pdwMZ0S1cGaJ2HtQmVa2Ewi8a0neq2jbOwUEHVUJs6FuV11bpGwaqFpfGNC9qtN7Bq1MKEU3BkVR3M2f4fgde72_n0IZk93T9Ob2aJzmiWJoJluigKgTThBLHYZjnOkRII29QwbTUlJDWWW2W1QDnnqshVaRnnnDKLshG42uWuvfvoTehkU4Xtfqo1rg8Sc0LiJJKziF7-QVeu923cTmKBWVRJBY3U9Y7S3oXgjZVrH0_yG4mR3PqW0bf89h3Zi31iXzSm_CV_BEdgsgM-q9ps_k-SL8_zXeQXRY-J5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916111595</pqid></control><display><type>article</type><title>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Kaur, R. ; LeAnder, R. ; Mishra, N. K. ; Hagerty, J. R. ; Kasmi, R. ; Stanley, R. J. ; Celebi, M. E. ; Stoecker, W. V.</creator><creatorcontrib>Kaur, R. ; LeAnder, R. ; Mishra, N. K. ; Hagerty, J. R. ; Kasmi, R. ; Stanley, R. J. ; Celebi, M. E. ; Stoecker, W. V.</creatorcontrib><description>Purpose
Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation.
Methods
Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio.
Results
On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics.
Conclusion
The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.</description><identifier>ISSN: 0909-752X</identifier><identifier>EISSN: 1600-0846</identifier><identifier>DOI: 10.1111/srt.12352</identifier><identifier>PMID: 27892649</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Basal cell carcinoma ; Borders ; Carcinoma, Basal Cell - classification ; Carcinoma, Basal Cell - diagnostic imaging ; Carcinoma, Basal Cell - pathology ; Classification ; dermoscopy ; Dermoscopy - instrumentation ; Dermoscopy - methods ; Error analysis ; Errors ; Huang method ; Humans ; image analysis ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Isodata method ; lesion segmentation ; Li method ; Melanoma - pathology ; Otsu method ; Pattern Recognition, Automated - methods ; Shanbhag method ; Skin cancer ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology ; Test sets ; thresholding ; Vignetting</subject><ispartof>Skin research and technology, 2017-08, Vol.23 (3), p.416-428</ispartof><rights>2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</citedby><cites>FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsrt.12352$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsrt.12352$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsrt.12352$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27892649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, R.</creatorcontrib><creatorcontrib>LeAnder, R.</creatorcontrib><creatorcontrib>Mishra, N. K.</creatorcontrib><creatorcontrib>Hagerty, J. R.</creatorcontrib><creatorcontrib>Kasmi, R.</creatorcontrib><creatorcontrib>Stanley, R. J.</creatorcontrib><creatorcontrib>Celebi, M. E.</creatorcontrib><creatorcontrib>Stoecker, W. V.</creatorcontrib><title>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</title><title>Skin research and technology</title><addtitle>Skin Res Technol</addtitle><description>Purpose
Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation.
Methods
Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio.
Results
On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics.
Conclusion
The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.</description><subject>Algorithms</subject><subject>Basal cell carcinoma</subject><subject>Borders</subject><subject>Carcinoma, Basal Cell - classification</subject><subject>Carcinoma, Basal Cell - diagnostic imaging</subject><subject>Carcinoma, Basal Cell - pathology</subject><subject>Classification</subject><subject>dermoscopy</subject><subject>Dermoscopy - instrumentation</subject><subject>Dermoscopy - methods</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Huang method</subject><subject>Humans</subject><subject>image analysis</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Isodata method</subject><subject>lesion segmentation</subject><subject>Li method</subject><subject>Melanoma - pathology</subject><subject>Otsu method</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Shanbhag method</subject><subject>Skin cancer</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><subject>Test sets</subject><subject>thresholding</subject><subject>Vignetting</subject><issn>0909-752X</issn><issn>1600-0846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk4P_gMS8KKHbkmbpMlRhr9gIOgEPYU0TbaOtplJi-y_N3PTg2AOLzz48H3vfQA4x2iM45sE341xmtH0AAwxQyhBnLBDMEQCiSSn6dsAnISwQghRgbNjMEhzLlJGxBC8z5fehKWry6pdwMZ0S1cGaJ2HtQmVa2Ewi8a0neq2jbOwUEHVUJs6FuV11bpGwaqFpfGNC9qtN7Bq1MKEU3BkVR3M2f4fgde72_n0IZk93T9Ob2aJzmiWJoJluigKgTThBLHYZjnOkRII29QwbTUlJDWWW2W1QDnnqshVaRnnnDKLshG42uWuvfvoTehkU4Xtfqo1rg8Sc0LiJJKziF7-QVeu923cTmKBWVRJBY3U9Y7S3oXgjZVrH0_yG4mR3PqW0bf89h3Zi31iXzSm_CV_BEdgsgM-q9ps_k-SL8_zXeQXRY-J5w</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kaur, R.</creator><creator>LeAnder, R.</creator><creator>Mishra, N. K.</creator><creator>Hagerty, J. R.</creator><creator>Kasmi, R.</creator><creator>Stanley, R. J.</creator><creator>Celebi, M. E.</creator><creator>Stoecker, W. V.</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201708</creationdate><title>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</title><author>Kaur, R. ; LeAnder, R. ; Mishra, N. K. ; Hagerty, J. R. ; Kasmi, R. ; Stanley, R. J. ; Celebi, M. E. ; Stoecker, W. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Basal cell carcinoma</topic><topic>Borders</topic><topic>Carcinoma, Basal Cell - classification</topic><topic>Carcinoma, Basal Cell - diagnostic imaging</topic><topic>Carcinoma, Basal Cell - pathology</topic><topic>Classification</topic><topic>dermoscopy</topic><topic>Dermoscopy - instrumentation</topic><topic>Dermoscopy - methods</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Huang method</topic><topic>Humans</topic><topic>image analysis</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Isodata method</topic><topic>lesion segmentation</topic><topic>Li method</topic><topic>Melanoma - pathology</topic><topic>Otsu method</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Shanbhag method</topic><topic>Skin cancer</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><topic>Test sets</topic><topic>thresholding</topic><topic>Vignetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, R.</creatorcontrib><creatorcontrib>LeAnder, R.</creatorcontrib><creatorcontrib>Mishra, N. K.</creatorcontrib><creatorcontrib>Hagerty, J. R.</creatorcontrib><creatorcontrib>Kasmi, R.</creatorcontrib><creatorcontrib>Stanley, R. J.</creatorcontrib><creatorcontrib>Celebi, M. E.</creatorcontrib><creatorcontrib>Stoecker, W. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Skin research and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kaur, R.</au><au>LeAnder, R.</au><au>Mishra, N. K.</au><au>Hagerty, J. R.</au><au>Kasmi, R.</au><au>Stanley, R. J.</au><au>Celebi, M. E.</au><au>Stoecker, W. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images</atitle><jtitle>Skin research and technology</jtitle><addtitle>Skin Res Technol</addtitle><date>2017-08</date><risdate>2017</risdate><volume>23</volume><issue>3</issue><spage>416</spage><epage>428</epage><pages>416-428</pages><issn>0909-752X</issn><eissn>1600-0846</eissn><abstract>Purpose
Algorithms employed for pigmented lesion segmentation perform poorly on dermoscopy images of basal cell carcinoma (BCC), the most common skin cancer. The main objective was to develop better methods for BCC segmentation.
Methods
Fifteen thresholding methods were implemented for BCC lesion segmentation. We propose two error metrics that better measure the type II error: Relative XOR Error and Lesion Capture Ratio.
Results
On training/test sets of 305 and 34 BCC images, respectively, five new techniques outperform two state‐of‐the‐art methods used in segmentation of melanomas, based on the new error metrics.
Conclusion
The proposed algorithms, which include solutions for image vignetting correction and border expansion to achieve dermatologist‐like borders, provide more inclusive and feature‐preserving border detection, favoring better BCC classification accuracy, in future work.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>27892649</pmid><doi>10.1111/srt.12352</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0909-752X |
ispartof | Skin research and technology, 2017-08, Vol.23 (3), p.416-428 |
issn | 0909-752X 1600-0846 |
language | eng |
recordid | cdi_proquest_miscellaneous_1844353476 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | Algorithms Basal cell carcinoma Borders Carcinoma, Basal Cell - classification Carcinoma, Basal Cell - diagnostic imaging Carcinoma, Basal Cell - pathology Classification dermoscopy Dermoscopy - instrumentation Dermoscopy - methods Error analysis Errors Huang method Humans image analysis Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Isodata method lesion segmentation Li method Melanoma - pathology Otsu method Pattern Recognition, Automated - methods Shanbhag method Skin cancer Skin Neoplasms - diagnostic imaging Skin Neoplasms - pathology Test sets thresholding Vignetting |
title | Thresholding methods for lesion segmentation of basal cell carcinoma in dermoscopy images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thresholding%20methods%20for%20lesion%20segmentation%20of%20basal%20cell%20carcinoma%20in%20dermoscopy%20images&rft.jtitle=Skin%20research%20and%20technology&rft.au=Kaur,%20R.&rft.date=2017-08&rft.volume=23&rft.issue=3&rft.spage=416&rft.epage=428&rft.pages=416-428&rft.issn=0909-752X&rft.eissn=1600-0846&rft_id=info:doi/10.1111/srt.12352&rft_dat=%3Cproquest_24P%3E1844353476%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3532-963cbbb90c4840696337170a901f2e6cfc5442ef8fafc90788ab7adf688856f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916111595&rft_id=info:pmid/27892649&rfr_iscdi=true |