Loading…

Substrate Engineering Enabling Fluorescence Droplet Entrapment for IVC-FACS-Based Ultrahigh-Throughput Screening

In vitro compartmentalization-based fluorescence-activated cell sorting (IVC-FACS) is a powerful screening tool for directed evolution of enzymes. However, the efficiency of IVC-FACS is limited by the tendency of the fluorescent reporter to diffuse out of the droplets, which decouples the genotype a...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2016-09, Vol.88 (17), p.8587-8595
Main Authors: Ma, Fuqiang, Fischer, Michael, Han, Yunbin, Withers, Stephen G, Feng, Yan, Yang, Guang-Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In vitro compartmentalization-based fluorescence-activated cell sorting (IVC-FACS) is a powerful screening tool for directed evolution of enzymes. However, the efficiency of IVC-FACS is limited by the tendency of the fluorescent reporter to diffuse out of the droplets, which decouples the genotype and phenotype of the target gene. Herein we present a new strategy called fluorescence droplet entrapment (FDE) to solve this problem. The substrate is designed with a polarity that enables it to pass through the oil phase, react with the enzyme and generate an oil-impermeable and fluorescent product that remains entrapped inside the droplet. Several FDE substrates were designed, using two distinct substrate engineering strategies, for the detection of phosphotriesterases, carboxylesterases, and glycosidases activities. Model screening assays in which rare phosphotriesterase-active cells were enriched from large excesses of inactive cells showed that the enrichment efficiency achievable using an FDE substrate was as high as 900-fold: the highest yet reported in such an IVC-FACS system. Thus, FDE provides a means to tightly control the onset of the enzymatic reaction, minimize droplet cross-talk, and lower the background fluorescence. It therefore may serve as a useful strategy for the IVC-FACS screening of enzymes, antibodies, and other proteins.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.6b01712