Loading…

On the validity of the effective field theory approach to SM precision tests

A bstract We discuss the conditions for an effective field theory (EFT) to give an adequate low-energy description of an underlying physics beyond the Standard Model (SM). Starting from the EFT where the SM is extended by dimension-6 operators, experimental data can be used without further assumptio...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2016-07, Vol.2016 (7), p.1-26, Article 144
Main Authors: Contino, Roberto, Falkowski, Adam, Goertz, Florian, Grojean, Christophe, Riva, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract We discuss the conditions for an effective field theory (EFT) to give an adequate low-energy description of an underlying physics beyond the Standard Model (SM). Starting from the EFT where the SM is extended by dimension-6 operators, experimental data can be used without further assumptions to measure (or set limits on) the EFT parameters. The interpretation of these results requires instead a set of broad assumptions (e.g. power counting rules) on the UV dynamics. This allows one to establish, in a bottom-up approach, the validity range of the EFT description, and to assess the error associated with the truncation of the EFT series. We give a practical prescription on how experimental results could be reported, so that they admit a maximally broad range of theoretical interpretations. Namely, the experimental constraints on dimension-6 operators should be reported as functions of the kinematic variables that set the relevant energy scale of the studied process. This is especially important for hadron collider experiments where collisions probe a wide range of energy scales.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2016)144