Loading…
Toward High-Output Organic Vertical Field Effect Transistors: Key Design Parameters
The performance of C60‐based organic vertical field‐effect transistors (VFETs) is investigated as a function of key geometrical parameters to attain a better understanding of their operation mechanism and eventually to enhance their output current for maximal driving capability. To this end, a 2D de...
Saved in:
Published in: | Advanced functional materials 2016-10, Vol.26 (38), p.6888-6895 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of C60‐based organic vertical field‐effect transistors (VFETs) is investigated as a function of key geometrical parameters to attain a better understanding of their operation mechanism and eventually to enhance their output current for maximal driving capability. To this end, a 2D device simulation is performed and compared with experimental results. The results reveal that the output current scales mostly with the width of its drain electrode, which is in essence equivalent to the channel width in conventional lateral‐channel transistors, but that of the source electrode and the thickness of C60 layers underneath the source electrode also play subtle but important roles mainly due to the source contact‐limited behavior of the organic VFETs under study. With design strategies acquired from this study, a VFET with an on/off ratio of 5.5 × 105 and on‐current corresponding to a channel length of near 1 μm in a conventional lateral‐channel organic field‐effect transistor (FET) is demonstrated, while the drain width of the VFET and the channel width of the lateral‐channel organic FET are the same.
The operation mechanism and performance of organic vertical field effect transistors (VFETs) have been investigated. Several key factors are identified such as source/drain electrode widths, source contact resistance, and bottom active layer thickness. With the key parameters, the proposed VFET shows greater performance than conventional organic field‐effect transistors with lateral channel in terms of driving capability. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.201601956 |