Loading…
Magnetically Recoverable Catalysts Based on Polyphenylenepyridyl Dendrons and Dendrimers
Here, a systematic study of magnetite nanoparticle (NP) formation in the presence of functional polyphenylenepyridyl dendrons and dendrimers of different generations and structures (such as focal groups, periphery and a combination of phenylene and pyridyl moieties) has been reported. For certain de...
Saved in:
Published in: | RSC advances 2014-01, Vol.4 (44), p.23271-23280 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, a systematic study of magnetite nanoparticle (NP) formation in the presence of functional polyphenylenepyridyl dendrons and dendrimers of different generations and structures (such as focal groups, periphery and a combination of phenylene and pyridyl moieties) has been reported. For certain dendron/dendrimer concentrations and structures, well-dispersible, multi-core, flower-like crystals are formed which display ferrimagnetic-like behavior. It is noteworthy that the least complex second generation polyphenylenepyridyl dendrons with a carboxyl focal group already allow formation of flower-like crystals. Magnetically recoverable catalysts were obtained viaPd NP formation in the dendron/dendrimer shells of magnetite NP and tested in selective hydrogenation of dimethylethynylcarbinol to dimethylvinylcarbinol. Dependences of catalytic activity and selectivity on the dendron/dendrimer generation and structure, type of Pd species, and Pd NP size have been demonstrated. High selectivity and activity of these catalysts along with easy catalyst recovery and successful repeated use make them promising in catalytic hydrogenation. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c4ra00878b |