Loading…

Geometry of Logarithmic Strain Measures in Solid Mechanics

We consider the two logarithmic strain measures ω iso = | | dev n log U | | = | | dev n log F T F | | and ω vol = | tr ( log U ) = | tr ( log F T F ) | = | log ( det U ) | , which are isotropic invariants of the Hencky strain tensor log U , and show that they can be uniquely characterized by purely...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 2016-11, Vol.222 (2), p.507-572
Main Authors: Neff, Patrizio, Eidel, Bernhard, Martin, Robert J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923
cites cdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923
container_end_page 572
container_issue 2
container_start_page 507
container_title Archive for rational mechanics and analysis
container_volume 222
creator Neff, Patrizio
Eidel, Bernhard
Martin, Robert J.
description We consider the two logarithmic strain measures ω iso = | | dev n log U | | = | | dev n log F T F | | and ω vol = | tr ( log U ) = | tr ( log F T F ) | = | log ( det U ) | , which are isotropic invariants of the Hencky strain tensor log U , and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL ( n ) . Here, F is the deformation gradient, U = F T F is the right Biot-stretch tensor, log denotes the principal matrix logarithm, ‖ · ‖ is the Frobenius matrix norm, tr is the trace operator and dev n X = X - 1 n tr ( X ) · 1 is the n -dimensional deviator of X ∈ R n × n . This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε = sym ∇ u , which is the symmetric part of the displacement gradient ∇ u , and reveals a close geometric relation between the classical quadratic isotropic energy potential μ ‖ dev n sym ∇ u ‖ 2 + κ 2 [ tr ( sym ∇ u ) ] 2 = μ ‖ dev n ε ‖ 2 + κ 2 [ tr ( ε ) ] 2 in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy μ ‖ dev n log U ‖ 2 + κ 2 [ tr ( log U ) ] 2 = μ ω iso 2 + κ 2 ω vol 2 , where μ is the shear modulus and κ denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor R , where F = R U is the polar decomposition of F . We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.
doi_str_mv 10.1007/s00205-016-1007-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845807916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064689975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_Rmewm2XiTolWoeKieQ8hm2y3bTU12of33pqwgCJ5m3vC9x_AIuUa4QwB5HwEYcAoo6FHT_QmZYJEzCkLmp2QCADlVnMlzchHj5ihZLibkYe781vXhkPk6W_iVCU2_3jY2W_bBNF325kwcgotZ2pe-bap0sWvTNTZekrPatNFd_cwp-Xx--pi90MX7_HX2uKA2V6ynDJkyKOrCcW5NVRnLlLKAsrYFU8xUaJFbrFDY0mHFmHFGguQFlopJxfIpuR1zd8F_DS72ettE69rWdM4PUWNZ8BKkQpHQmz_oxg-hS99pBqIQpVKSJwpHygYfY3C13oVma8JBI-hje3psU6c2R71PHjZ6YmK7lQu_yf-bvgGernXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064689975</pqid></control><display><type>article</type><title>Geometry of Logarithmic Strain Measures in Solid Mechanics</title><source>Springer Nature</source><creator>Neff, Patrizio ; Eidel, Bernhard ; Martin, Robert J.</creator><creatorcontrib>Neff, Patrizio ; Eidel, Bernhard ; Martin, Robert J.</creatorcontrib><description>We consider the two logarithmic strain measures ω iso = | | dev n log U | | = | | dev n log F T F | | and ω vol = | tr ( log U ) = | tr ( log F T F ) | = | log ( det U ) | , which are isotropic invariants of the Hencky strain tensor log U , and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL ( n ) . Here, F is the deformation gradient, U = F T F is the right Biot-stretch tensor, log denotes the principal matrix logarithm, ‖ · ‖ is the Frobenius matrix norm, tr is the trace operator and dev n X = X - 1 n tr ( X ) · 1 is the n -dimensional deviator of X ∈ R n × n . This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε = sym ∇ u , which is the symmetric part of the displacement gradient ∇ u , and reveals a close geometric relation between the classical quadratic isotropic energy potential μ ‖ dev n sym ∇ u ‖ 2 + κ 2 [ tr ( sym ∇ u ) ] 2 = μ ‖ dev n ε ‖ 2 + κ 2 [ tr ( ε ) ] 2 in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy μ ‖ dev n log U ‖ 2 + κ 2 [ tr ( log U ) ] 2 = μ ω iso 2 + κ 2 ω vol 2 , where μ is the shear modulus and κ denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor R , where F = R U is the polar decomposition of F . We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-016-1007-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bulk modulus ; Classical Mechanics ; Complex Systems ; Deduction ; Deformation ; Elasticity ; Fluid- and Aerodynamics ; Geodesy ; Invariants ; Mathematical analysis ; Mathematical and Computational Physics ; Matrices (mathematics) ; Nonlinearity ; Physics ; Physics and Astronomy ; Shear modulus ; Solid mechanics ; Strain ; Tensors ; Texts ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2016-11, Vol.222 (2), p.507-572</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</citedby><cites>FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Neff, Patrizio</creatorcontrib><creatorcontrib>Eidel, Bernhard</creatorcontrib><creatorcontrib>Martin, Robert J.</creatorcontrib><title>Geometry of Logarithmic Strain Measures in Solid Mechanics</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We consider the two logarithmic strain measures ω iso = | | dev n log U | | = | | dev n log F T F | | and ω vol = | tr ( log U ) = | tr ( log F T F ) | = | log ( det U ) | , which are isotropic invariants of the Hencky strain tensor log U , and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL ( n ) . Here, F is the deformation gradient, U = F T F is the right Biot-stretch tensor, log denotes the principal matrix logarithm, ‖ · ‖ is the Frobenius matrix norm, tr is the trace operator and dev n X = X - 1 n tr ( X ) · 1 is the n -dimensional deviator of X ∈ R n × n . This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε = sym ∇ u , which is the symmetric part of the displacement gradient ∇ u , and reveals a close geometric relation between the classical quadratic isotropic energy potential μ ‖ dev n sym ∇ u ‖ 2 + κ 2 [ tr ( sym ∇ u ) ] 2 = μ ‖ dev n ε ‖ 2 + κ 2 [ tr ( ε ) ] 2 in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy μ ‖ dev n log U ‖ 2 + κ 2 [ tr ( log U ) ] 2 = μ ω iso 2 + κ 2 ω vol 2 , where μ is the shear modulus and κ denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor R , where F = R U is the polar decomposition of F . We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.</description><subject>Bulk modulus</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Deduction</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Fluid- and Aerodynamics</subject><subject>Geodesy</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Matrices (mathematics)</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shear modulus</subject><subject>Solid mechanics</subject><subject>Strain</subject><subject>Tensors</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_Rmewm2XiTolWoeKieQ8hm2y3bTU12of33pqwgCJ5m3vC9x_AIuUa4QwB5HwEYcAoo6FHT_QmZYJEzCkLmp2QCADlVnMlzchHj5ihZLibkYe781vXhkPk6W_iVCU2_3jY2W_bBNF325kwcgotZ2pe-bap0sWvTNTZekrPatNFd_cwp-Xx--pi90MX7_HX2uKA2V6ynDJkyKOrCcW5NVRnLlLKAsrYFU8xUaJFbrFDY0mHFmHFGguQFlopJxfIpuR1zd8F_DS72ettE69rWdM4PUWNZ8BKkQpHQmz_oxg-hS99pBqIQpVKSJwpHygYfY3C13oVma8JBI-hje3psU6c2R71PHjZ6YmK7lQu_yf-bvgGernXg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Neff, Patrizio</creator><creator>Eidel, Bernhard</creator><creator>Martin, Robert J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161101</creationdate><title>Geometry of Logarithmic Strain Measures in Solid Mechanics</title><author>Neff, Patrizio ; Eidel, Bernhard ; Martin, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bulk modulus</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Deduction</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Fluid- and Aerodynamics</topic><topic>Geodesy</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Matrices (mathematics)</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shear modulus</topic><topic>Solid mechanics</topic><topic>Strain</topic><topic>Tensors</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neff, Patrizio</creatorcontrib><creatorcontrib>Eidel, Bernhard</creatorcontrib><creatorcontrib>Martin, Robert J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neff, Patrizio</au><au>Eidel, Bernhard</au><au>Martin, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of Logarithmic Strain Measures in Solid Mechanics</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>222</volume><issue>2</issue><spage>507</spage><epage>572</epage><pages>507-572</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We consider the two logarithmic strain measures ω iso = | | dev n log U | | = | | dev n log F T F | | and ω vol = | tr ( log U ) = | tr ( log F T F ) | = | log ( det U ) | , which are isotropic invariants of the Hencky strain tensor log U , and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group GL ( n ) . Here, F is the deformation gradient, U = F T F is the right Biot-stretch tensor, log denotes the principal matrix logarithm, ‖ · ‖ is the Frobenius matrix norm, tr is the trace operator and dev n X = X - 1 n tr ( X ) · 1 is the n -dimensional deviator of X ∈ R n × n . This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor ε = sym ∇ u , which is the symmetric part of the displacement gradient ∇ u , and reveals a close geometric relation between the classical quadratic isotropic energy potential μ ‖ dev n sym ∇ u ‖ 2 + κ 2 [ tr ( sym ∇ u ) ] 2 = μ ‖ dev n ε ‖ 2 + κ 2 [ tr ( ε ) ] 2 in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy μ ‖ dev n log U ‖ 2 + κ 2 [ tr ( log U ) ] 2 = μ ω iso 2 + κ 2 ω vol 2 , where μ is the shear modulus and κ denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor R , where F = R U is the polar decomposition of F . We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-016-1007-x</doi><tpages>66</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2016-11, Vol.222 (2), p.507-572
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_miscellaneous_1845807916
source Springer Nature
subjects Bulk modulus
Classical Mechanics
Complex Systems
Deduction
Deformation
Elasticity
Fluid- and Aerodynamics
Geodesy
Invariants
Mathematical analysis
Mathematical and Computational Physics
Matrices (mathematics)
Nonlinearity
Physics
Physics and Astronomy
Shear modulus
Solid mechanics
Strain
Tensors
Texts
Theoretical
title Geometry of Logarithmic Strain Measures in Solid Mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20Logarithmic%20Strain%20Measures%20in%20Solid%20Mechanics&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Neff,%20Patrizio&rft.date=2016-11-01&rft.volume=222&rft.issue=2&rft.spage=507&rft.epage=572&rft.pages=507-572&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-016-1007-x&rft_dat=%3Cproquest_cross%3E2064689975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2064689975&rft_id=info:pmid/&rfr_iscdi=true