Loading…
Geometry of Logarithmic Strain Measures in Solid Mechanics
We consider the two logarithmic strain measures ω iso = | | dev n log U | | = | | dev n log F T F | | and ω vol = | tr ( log U ) = | tr ( log F T F ) | = | log ( det U ) | , which are isotropic invariants of the Hencky strain tensor log U , and show that they can be uniquely characterized by purely...
Saved in:
Published in: | Archive for rational mechanics and analysis 2016-11, Vol.222 (2), p.507-572 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923 |
container_end_page | 572 |
container_issue | 2 |
container_start_page | 507 |
container_title | Archive for rational mechanics and analysis |
container_volume | 222 |
creator | Neff, Patrizio Eidel, Bernhard Martin, Robert J. |
description | We consider the two logarithmic strain measures
ω
iso
=
|
|
dev
n
log
U
|
|
=
|
|
dev
n
log
F
T
F
|
|
and
ω
vol
=
|
tr
(
log
U
)
=
|
tr
(
log
F
T
F
)
|
=
|
log
(
det
U
)
|
,
which are isotropic invariants of the Hencky strain tensor
log
U
, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group
GL
(
n
)
. Here,
F
is the deformation gradient,
U
=
F
T
F
is the right Biot-stretch tensor,
log
denotes the principal matrix logarithm,
‖
·
‖
is the Frobenius matrix norm,
tr
is the trace operator and
dev
n
X
=
X
-
1
n
tr
(
X
)
·
1
is the
n
-dimensional deviator of
X
∈
R
n
×
n
. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor
ε
=
sym
∇
u
, which is the symmetric part of the displacement gradient
∇
u
, and reveals a close geometric relation between the classical quadratic isotropic energy potential
μ
‖
dev
n
sym
∇
u
‖
2
+
κ
2
[
tr
(
sym
∇
u
)
]
2
=
μ
‖
dev
n
ε
‖
2
+
κ
2
[
tr
(
ε
)
]
2
in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy
μ
‖
dev
n
log
U
‖
2
+
κ
2
[
tr
(
log
U
)
]
2
=
μ
ω
iso
2
+
κ
2
ω
vol
2
,
where
μ
is the shear modulus and
κ
denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor
R
, where
F
=
R
U
is the polar decomposition of
F
. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity. |
doi_str_mv | 10.1007/s00205-016-1007-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845807916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2064689975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_Rmewm2XiTolWoeKieQ8hm2y3bTU12of33pqwgCJ5m3vC9x_AIuUa4QwB5HwEYcAoo6FHT_QmZYJEzCkLmp2QCADlVnMlzchHj5ihZLibkYe781vXhkPk6W_iVCU2_3jY2W_bBNF325kwcgotZ2pe-bap0sWvTNTZekrPatNFd_cwp-Xx--pi90MX7_HX2uKA2V6ynDJkyKOrCcW5NVRnLlLKAsrYFU8xUaJFbrFDY0mHFmHFGguQFlopJxfIpuR1zd8F_DS72ettE69rWdM4PUWNZ8BKkQpHQmz_oxg-hS99pBqIQpVKSJwpHygYfY3C13oVma8JBI-hje3psU6c2R71PHjZ6YmK7lQu_yf-bvgGernXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064689975</pqid></control><display><type>article</type><title>Geometry of Logarithmic Strain Measures in Solid Mechanics</title><source>Springer Nature</source><creator>Neff, Patrizio ; Eidel, Bernhard ; Martin, Robert J.</creator><creatorcontrib>Neff, Patrizio ; Eidel, Bernhard ; Martin, Robert J.</creatorcontrib><description>We consider the two logarithmic strain measures
ω
iso
=
|
|
dev
n
log
U
|
|
=
|
|
dev
n
log
F
T
F
|
|
and
ω
vol
=
|
tr
(
log
U
)
=
|
tr
(
log
F
T
F
)
|
=
|
log
(
det
U
)
|
,
which are isotropic invariants of the Hencky strain tensor
log
U
, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group
GL
(
n
)
. Here,
F
is the deformation gradient,
U
=
F
T
F
is the right Biot-stretch tensor,
log
denotes the principal matrix logarithm,
‖
·
‖
is the Frobenius matrix norm,
tr
is the trace operator and
dev
n
X
=
X
-
1
n
tr
(
X
)
·
1
is the
n
-dimensional deviator of
X
∈
R
n
×
n
. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor
ε
=
sym
∇
u
, which is the symmetric part of the displacement gradient
∇
u
, and reveals a close geometric relation between the classical quadratic isotropic energy potential
μ
‖
dev
n
sym
∇
u
‖
2
+
κ
2
[
tr
(
sym
∇
u
)
]
2
=
μ
‖
dev
n
ε
‖
2
+
κ
2
[
tr
(
ε
)
]
2
in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy
μ
‖
dev
n
log
U
‖
2
+
κ
2
[
tr
(
log
U
)
]
2
=
μ
ω
iso
2
+
κ
2
ω
vol
2
,
where
μ
is the shear modulus and
κ
denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor
R
, where
F
=
R
U
is the polar decomposition of
F
. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-016-1007-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bulk modulus ; Classical Mechanics ; Complex Systems ; Deduction ; Deformation ; Elasticity ; Fluid- and Aerodynamics ; Geodesy ; Invariants ; Mathematical analysis ; Mathematical and Computational Physics ; Matrices (mathematics) ; Nonlinearity ; Physics ; Physics and Astronomy ; Shear modulus ; Solid mechanics ; Strain ; Tensors ; Texts ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2016-11, Vol.222 (2), p.507-572</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</citedby><cites>FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Neff, Patrizio</creatorcontrib><creatorcontrib>Eidel, Bernhard</creatorcontrib><creatorcontrib>Martin, Robert J.</creatorcontrib><title>Geometry of Logarithmic Strain Measures in Solid Mechanics</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We consider the two logarithmic strain measures
ω
iso
=
|
|
dev
n
log
U
|
|
=
|
|
dev
n
log
F
T
F
|
|
and
ω
vol
=
|
tr
(
log
U
)
=
|
tr
(
log
F
T
F
)
|
=
|
log
(
det
U
)
|
,
which are isotropic invariants of the Hencky strain tensor
log
U
, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group
GL
(
n
)
. Here,
F
is the deformation gradient,
U
=
F
T
F
is the right Biot-stretch tensor,
log
denotes the principal matrix logarithm,
‖
·
‖
is the Frobenius matrix norm,
tr
is the trace operator and
dev
n
X
=
X
-
1
n
tr
(
X
)
·
1
is the
n
-dimensional deviator of
X
∈
R
n
×
n
. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor
ε
=
sym
∇
u
, which is the symmetric part of the displacement gradient
∇
u
, and reveals a close geometric relation between the classical quadratic isotropic energy potential
μ
‖
dev
n
sym
∇
u
‖
2
+
κ
2
[
tr
(
sym
∇
u
)
]
2
=
μ
‖
dev
n
ε
‖
2
+
κ
2
[
tr
(
ε
)
]
2
in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy
μ
‖
dev
n
log
U
‖
2
+
κ
2
[
tr
(
log
U
)
]
2
=
μ
ω
iso
2
+
κ
2
ω
vol
2
,
where
μ
is the shear modulus and
κ
denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor
R
, where
F
=
R
U
is the polar decomposition of
F
. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.</description><subject>Bulk modulus</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Deduction</subject><subject>Deformation</subject><subject>Elasticity</subject><subject>Fluid- and Aerodynamics</subject><subject>Geodesy</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Matrices (mathematics)</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shear modulus</subject><subject>Solid mechanics</subject><subject>Strain</subject><subject>Tensors</subject><subject>Texts</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_Rmewm2XiTolWoeKieQ8hm2y3bTU12of33pqwgCJ5m3vC9x_AIuUa4QwB5HwEYcAoo6FHT_QmZYJEzCkLmp2QCADlVnMlzchHj5ihZLibkYe781vXhkPk6W_iVCU2_3jY2W_bBNF325kwcgotZ2pe-bap0sWvTNTZekrPatNFd_cwp-Xx--pi90MX7_HX2uKA2V6ynDJkyKOrCcW5NVRnLlLKAsrYFU8xUaJFbrFDY0mHFmHFGguQFlopJxfIpuR1zd8F_DS72ettE69rWdM4PUWNZ8BKkQpHQmz_oxg-hS99pBqIQpVKSJwpHygYfY3C13oVma8JBI-hje3psU6c2R71PHjZ6YmK7lQu_yf-bvgGernXg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Neff, Patrizio</creator><creator>Eidel, Bernhard</creator><creator>Martin, Robert J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161101</creationdate><title>Geometry of Logarithmic Strain Measures in Solid Mechanics</title><author>Neff, Patrizio ; Eidel, Bernhard ; Martin, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bulk modulus</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Deduction</topic><topic>Deformation</topic><topic>Elasticity</topic><topic>Fluid- and Aerodynamics</topic><topic>Geodesy</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Matrices (mathematics)</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shear modulus</topic><topic>Solid mechanics</topic><topic>Strain</topic><topic>Tensors</topic><topic>Texts</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neff, Patrizio</creatorcontrib><creatorcontrib>Eidel, Bernhard</creatorcontrib><creatorcontrib>Martin, Robert J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neff, Patrizio</au><au>Eidel, Bernhard</au><au>Martin, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometry of Logarithmic Strain Measures in Solid Mechanics</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>222</volume><issue>2</issue><spage>507</spage><epage>572</epage><pages>507-572</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We consider the two logarithmic strain measures
ω
iso
=
|
|
dev
n
log
U
|
|
=
|
|
dev
n
log
F
T
F
|
|
and
ω
vol
=
|
tr
(
log
U
)
=
|
tr
(
log
F
T
F
)
|
=
|
log
(
det
U
)
|
,
which are isotropic invariants of the Hencky strain tensor
log
U
, and show that they can be uniquely characterized by purely geometric methods based on the geodesic distance on the general linear group
GL
(
n
)
. Here,
F
is the deformation gradient,
U
=
F
T
F
is the right Biot-stretch tensor,
log
denotes the principal matrix logarithm,
‖
·
‖
is the Frobenius matrix norm,
tr
is the trace operator and
dev
n
X
=
X
-
1
n
tr
(
X
)
·
1
is the
n
-dimensional deviator of
X
∈
R
n
×
n
. This characterization identifies the Hencky (or true) strain tensor as the natural nonlinear extension of the linear (infinitesimal) strain tensor
ε
=
sym
∇
u
, which is the symmetric part of the displacement gradient
∇
u
, and reveals a close geometric relation between the classical quadratic isotropic energy potential
μ
‖
dev
n
sym
∇
u
‖
2
+
κ
2
[
tr
(
sym
∇
u
)
]
2
=
μ
‖
dev
n
ε
‖
2
+
κ
2
[
tr
(
ε
)
]
2
in linear elasticity and the geometrically nonlinear quadratic isotropic Hencky energy
μ
‖
dev
n
log
U
‖
2
+
κ
2
[
tr
(
log
U
)
]
2
=
μ
ω
iso
2
+
κ
2
ω
vol
2
,
where
μ
is the shear modulus and
κ
denotes the bulk modulus. Our deduction involves a new fundamental logarithmic minimization property of the orthogonal polar factor
R
, where
F
=
R
U
is the polar decomposition of
F
. We also contrast our approach with prior attempts to establish the logarithmic Hencky strain tensor directly as the preferred strain tensor in nonlinear isotropic elasticity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-016-1007-x</doi><tpages>66</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9527 |
ispartof | Archive for rational mechanics and analysis, 2016-11, Vol.222 (2), p.507-572 |
issn | 0003-9527 1432-0673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845807916 |
source | Springer Nature |
subjects | Bulk modulus Classical Mechanics Complex Systems Deduction Deformation Elasticity Fluid- and Aerodynamics Geodesy Invariants Mathematical analysis Mathematical and Computational Physics Matrices (mathematics) Nonlinearity Physics Physics and Astronomy Shear modulus Solid mechanics Strain Tensors Texts Theoretical |
title | Geometry of Logarithmic Strain Measures in Solid Mechanics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A24%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometry%20of%20Logarithmic%20Strain%20Measures%20in%20Solid%20Mechanics&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Neff,%20Patrizio&rft.date=2016-11-01&rft.volume=222&rft.issue=2&rft.spage=507&rft.epage=572&rft.pages=507-572&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-016-1007-x&rft_dat=%3Cproquest_cross%3E2064689975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-2129a16f4e55caddac299c017fc4292ad1c15c1d16c8e1d22aea7075418927923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2064689975&rft_id=info:pmid/&rfr_iscdi=true |