Loading…

GLOBAL STRUCTURE STABILITY FOR THE WAVE CATCHING-UP PHENOMENON IN A PRESTRESSED TWO-MATERIAL BAR

Shock waves in a structure can result in the detachment of an interface and induce microcracks. In a recent study [Huang et al., R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 468 (2012), pp. 3882–3901], it was shown that for certain nonlinearly elastic materials it is possible to generate a phen...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on applied mathematics 2015-01, Vol.75 (2), p.585-604
Main Authors: HUANG, SHOU-JUN, DAI, HUI-HUI, KONG, DE-XING
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Shock waves in a structure can result in the detachment of an interface and induce microcracks. In a recent study [Huang et al., R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 468 (2012), pp. 3882–3901], it was shown that for certain nonlinearly elastic materials it is possible to generate a phenomenon in which a tensile wave can catch the first transmitted compressive wave (so the former can be undermined) in an initially stress-free two-material bar. In this study, we consider the wave catching-up phenomenon in a nonlinearly elastic prestressed two-material bar. We use the same method as that used by Huang et al. in the previously mentioned paper to construct solutions. Our main focus is on proving the global structure stability of the solutions in a prestressed (or initially stress-free) two-material bar. We first reduce the corresponding initial boundary value problem into several typical free boundary problems based on the formulation of Riemann invariants. Then, using a constructive method and carefully treating the complexity arising from multiple reflections of waves at the interface in the two-material bar, we successfully prove the global structure stability of the wave catching-up phenomenon.
ISSN:0036-1399
1095-712X
DOI:10.1137/130920265