Loading…

Action growth for AdS black holes

A bstract Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stati...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2016-09, Vol.2016 (9), p.1-23, Article 161
Main Authors: Cai, Rong-Gen, Ruan, Shan-Ming, Wang, Shao-Jiang, Yang, Run-Qiu, Peng, Rong-Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283
cites cdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283
container_end_page 23
container_issue 9
container_start_page 1
container_title The journal of high energy physics
container_volume 2016
creator Cai, Rong-Gen
Ruan, Shan-Ming
Wang, Shao-Jiang
Yang, Run-Qiu
Peng, Rong-Hui
description A bstract Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D -dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.
doi_str_mv 10.1007/JHEP09(2016)161
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845809884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845809884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKdnrxUv81D3pU3T5DhkOmWgoJ7D1zTZD7tmJh3if29GPQzB0_sdnvfl4yHkksItBSjHT7PpC8hRBpTfUE6PyIBCJlPBSnl8cJ-SsxDWALSgEgbkaqK7lWuThXdf3TKxzieT-jWpGtQfydI1JpyTE4tNMBe_OSTv99O3u1k6f354vJvMU81y6FJrbcEAK8MhBseywlIwiVmBnDKNBdei4hJZVWOtua20FKVFLXJW2ywT-ZCM-t2td587Ezq1WQVtmgZb43ZBUcEKAVIIFtHrP-ja7Xwbv4tUxpiQwPJIjXtKexeCN1Zt_WqD_ltRUHtlqlem9spUVBYb0DdCJNuF8Qe7_1R-AIAma7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824489043</pqid></control><display><type>article</type><title>Action growth for AdS black holes</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Cai, Rong-Gen ; Ruan, Shan-Ming ; Wang, Shao-Jiang ; Yang, Run-Qiu ; Peng, Rong-Hui</creator><creatorcontrib>Cai, Rong-Gen ; Ruan, Shan-Ming ; Wang, Shao-Jiang ; Yang, Run-Qiu ; Peng, Rong-Hui</creatorcontrib><description>A bstract Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D -dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2016)161</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Black holes ; Black holes (astronomy) ; Boundaries ; Classical and Quantum Gravitation ; Complexity ; Elementary Particles ; Gravitation ; High energy physics ; Horizon ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2016-09, Vol.2016 (9), p.1-23, Article 161</ispartof><rights>The Author(s) 2016</rights><rights>SISSA, Trieste, Italy 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</citedby><cites>FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1824489043/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1824489043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Cai, Rong-Gen</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Wang, Shao-Jiang</creatorcontrib><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Peng, Rong-Hui</creatorcontrib><title>Action growth for AdS black holes</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D -dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.</description><subject>Approximation</subject><subject>Black holes</subject><subject>Black holes (astronomy)</subject><subject>Boundaries</subject><subject>Classical and Quantum Gravitation</subject><subject>Complexity</subject><subject>Elementary Particles</subject><subject>Gravitation</subject><subject>High energy physics</subject><subject>Horizon</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kM9LwzAYhoMoOKdnrxUv81D3pU3T5DhkOmWgoJ7D1zTZD7tmJh3if29GPQzB0_sdnvfl4yHkksItBSjHT7PpC8hRBpTfUE6PyIBCJlPBSnl8cJ-SsxDWALSgEgbkaqK7lWuThXdf3TKxzieT-jWpGtQfydI1JpyTE4tNMBe_OSTv99O3u1k6f354vJvMU81y6FJrbcEAK8MhBseywlIwiVmBnDKNBdei4hJZVWOtua20FKVFLXJW2ywT-ZCM-t2td587Ezq1WQVtmgZb43ZBUcEKAVIIFtHrP-ja7Xwbv4tUxpiQwPJIjXtKexeCN1Zt_WqD_ltRUHtlqlem9spUVBYb0DdCJNuF8Qe7_1R-AIAma7g</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Cai, Rong-Gen</creator><creator>Ruan, Shan-Ming</creator><creator>Wang, Shao-Jiang</creator><creator>Yang, Run-Qiu</creator><creator>Peng, Rong-Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Action growth for AdS black holes</title><author>Cai, Rong-Gen ; Ruan, Shan-Ming ; Wang, Shao-Jiang ; Yang, Run-Qiu ; Peng, Rong-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Black holes</topic><topic>Black holes (astronomy)</topic><topic>Boundaries</topic><topic>Classical and Quantum Gravitation</topic><topic>Complexity</topic><topic>Elementary Particles</topic><topic>Gravitation</topic><topic>High energy physics</topic><topic>Horizon</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rong-Gen</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Wang, Shao-Jiang</creatorcontrib><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Peng, Rong-Hui</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Rong-Gen</au><au>Ruan, Shan-Ming</au><au>Wang, Shao-Jiang</au><au>Yang, Run-Qiu</au><au>Peng, Rong-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Action growth for AdS black holes</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>2016</volume><issue>9</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>161</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D -dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2016)161</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2016-09, Vol.2016 (9), p.1-23, Article 161
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1845809884
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Approximation
Black holes
Black holes (astronomy)
Boundaries
Classical and Quantum Gravitation
Complexity
Elementary Particles
Gravitation
High energy physics
Horizon
Mathematical analysis
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
title Action growth for AdS black holes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Action%20growth%20for%20AdS%20black%20holes&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cai,%20Rong-Gen&rft.date=2016-09-01&rft.volume=2016&rft.issue=9&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=161&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2016)161&rft_dat=%3Cproquest_cross%3E1845809884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1824489043&rft_id=info:pmid/&rfr_iscdi=true