Loading…
Action growth for AdS black holes
A bstract Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stati...
Saved in:
Published in: | The journal of high energy physics 2016-09, Vol.2016 (9), p.1-23, Article 161 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283 |
container_end_page | 23 |
container_issue | 9 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2016 |
creator | Cai, Rong-Gen Ruan, Shan-Ming Wang, Shao-Jiang Yang, Run-Qiu Peng, Rong-Hui |
description | A
bstract
Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general
D
-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature. |
doi_str_mv | 10.1007/JHEP09(2016)161 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845809884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845809884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKdnrxUv81D3pU3T5DhkOmWgoJ7D1zTZD7tmJh3if29GPQzB0_sdnvfl4yHkksItBSjHT7PpC8hRBpTfUE6PyIBCJlPBSnl8cJ-SsxDWALSgEgbkaqK7lWuThXdf3TKxzieT-jWpGtQfydI1JpyTE4tNMBe_OSTv99O3u1k6f354vJvMU81y6FJrbcEAK8MhBseywlIwiVmBnDKNBdei4hJZVWOtua20FKVFLXJW2ywT-ZCM-t2td587Ezq1WQVtmgZb43ZBUcEKAVIIFtHrP-ja7Xwbv4tUxpiQwPJIjXtKexeCN1Zt_WqD_ltRUHtlqlem9spUVBYb0DdCJNuF8Qe7_1R-AIAma7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1824489043</pqid></control><display><type>article</type><title>Action growth for AdS black holes</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Cai, Rong-Gen ; Ruan, Shan-Ming ; Wang, Shao-Jiang ; Yang, Run-Qiu ; Peng, Rong-Hui</creator><creatorcontrib>Cai, Rong-Gen ; Ruan, Shan-Ming ; Wang, Shao-Jiang ; Yang, Run-Qiu ; Peng, Rong-Hui</creatorcontrib><description>A
bstract
Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general
D
-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2016)161</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Black holes ; Black holes (astronomy) ; Boundaries ; Classical and Quantum Gravitation ; Complexity ; Elementary Particles ; Gravitation ; High energy physics ; Horizon ; Mathematical analysis ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2016-09, Vol.2016 (9), p.1-23, Article 161</ispartof><rights>The Author(s) 2016</rights><rights>SISSA, Trieste, Italy 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</citedby><cites>FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1824489043/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1824489043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><creatorcontrib>Cai, Rong-Gen</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Wang, Shao-Jiang</creatorcontrib><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Peng, Rong-Hui</creatorcontrib><title>Action growth for AdS black holes</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general
D
-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.</description><subject>Approximation</subject><subject>Black holes</subject><subject>Black holes (astronomy)</subject><subject>Boundaries</subject><subject>Classical and Quantum Gravitation</subject><subject>Complexity</subject><subject>Elementary Particles</subject><subject>Gravitation</subject><subject>High energy physics</subject><subject>Horizon</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kM9LwzAYhoMoOKdnrxUv81D3pU3T5DhkOmWgoJ7D1zTZD7tmJh3if29GPQzB0_sdnvfl4yHkksItBSjHT7PpC8hRBpTfUE6PyIBCJlPBSnl8cJ-SsxDWALSgEgbkaqK7lWuThXdf3TKxzieT-jWpGtQfydI1JpyTE4tNMBe_OSTv99O3u1k6f354vJvMU81y6FJrbcEAK8MhBseywlIwiVmBnDKNBdei4hJZVWOtua20FKVFLXJW2ywT-ZCM-t2td587Ezq1WQVtmgZb43ZBUcEKAVIIFtHrP-ja7Xwbv4tUxpiQwPJIjXtKexeCN1Zt_WqD_ltRUHtlqlem9spUVBYb0DdCJNuF8Qe7_1R-AIAma7g</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Cai, Rong-Gen</creator><creator>Ruan, Shan-Ming</creator><creator>Wang, Shao-Jiang</creator><creator>Yang, Run-Qiu</creator><creator>Peng, Rong-Hui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Action growth for AdS black holes</title><author>Cai, Rong-Gen ; Ruan, Shan-Ming ; Wang, Shao-Jiang ; Yang, Run-Qiu ; Peng, Rong-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Black holes</topic><topic>Black holes (astronomy)</topic><topic>Boundaries</topic><topic>Classical and Quantum Gravitation</topic><topic>Complexity</topic><topic>Elementary Particles</topic><topic>Gravitation</topic><topic>High energy physics</topic><topic>Horizon</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rong-Gen</creatorcontrib><creatorcontrib>Ruan, Shan-Ming</creatorcontrib><creatorcontrib>Wang, Shao-Jiang</creatorcontrib><creatorcontrib>Yang, Run-Qiu</creatorcontrib><creatorcontrib>Peng, Rong-Hui</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Rong-Gen</au><au>Ruan, Shan-Ming</au><au>Wang, Shao-Jiang</au><au>Yang, Run-Qiu</au><au>Peng, Rong-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Action growth for AdS black holes</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>2016</volume><issue>9</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><artnum>161</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general
D
-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2016)161</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2016-09, Vol.2016 (9), p.1-23, Article 161 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845809884 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Approximation Black holes Black holes (astronomy) Boundaries Classical and Quantum Gravitation Complexity Elementary Particles Gravitation High energy physics Horizon Mathematical analysis Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory |
title | Action growth for AdS black holes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Action%20growth%20for%20AdS%20black%20holes&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Cai,%20Rong-Gen&rft.date=2016-09-01&rft.volume=2016&rft.issue=9&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.artnum=161&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2016)161&rft_dat=%3Cproquest_cross%3E1845809884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-fff540abe6040a6a7ba7849a25a614ca56c8b69a4bdadc6fbc987fac834df2283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1824489043&rft_id=info:pmid/&rfr_iscdi=true |