Loading…

Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements

Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations-known as plasmons-when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2016-09, Vol.117 (11), p.116801-116801, Article 116801
Main Authors: Vacacela Gomez, C, Pisarra, M, Gravina, M, Pitarke, J M, Sindona, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3
cites cdi_FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3
container_end_page 116801
container_issue 11
container_start_page 116801
container_title Physical review letters
container_volume 117
creator Vacacela Gomez, C
Pisarra, M
Gravina, M
Pitarke, J M
Sindona, A
description Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations-known as plasmons-when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.
doi_str_mv 10.1103/PhysRevLett.117.116801
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845814110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1823038105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMotlb_QsnRy-pkk90kx1K0ClWL6HnJZmftSndTk63Sf29Kq3jzMAwM7715fISMGVwxBvx6sdyGZ_ycY9_Hg4yTK2BHZMhA6kQyJo7JEICzRAPIATkL4R0AWJqrUzJIZZ4zCXpIZouVCa3r6IOrMFBX05k36yV2SB9N53xTlq4L9Kvpl3SBvnFVY2n0dMbTifeme8MWuz6ck5ParAJeHPaIvN7evEzvkvnT7H46mSeWa9knQkCuULFKc2ulSoUpbZVVdSxqcqm5tpUAXppMcWGN1aUFaVIltNWp4NzwEbnc5669-9hg6Iu2CRZXsRG6TSiYEpliYsfof2nKgSsGWZTme6n1LgSPdbH2TWv8tmBQ7LKKP7zjQRZ73tE4PvzYlC1Wv7YfwPwbPtN94w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1823038105</pqid></control><display><type>article</type><title>Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Vacacela Gomez, C ; Pisarra, M ; Gravina, M ; Pitarke, J M ; Sindona, A</creator><creatorcontrib>Vacacela Gomez, C ; Pisarra, M ; Gravina, M ; Pitarke, J M ; Sindona, A</creatorcontrib><description>Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations-known as plasmons-when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.117.116801</identifier><identifier>PMID: 27661709</identifier><language>eng</language><publisher>United States</publisher><subject>Arrays ; Electronics ; Energy gaps (solid state) ; Graphene ; Mathematical models ; Nanostructure ; Photonic band gaps ; Plasmons</subject><ispartof>Physical review letters, 2016-09, Vol.117 (11), p.116801-116801, Article 116801</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3</citedby><cites>FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27661709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vacacela Gomez, C</creatorcontrib><creatorcontrib>Pisarra, M</creatorcontrib><creatorcontrib>Gravina, M</creatorcontrib><creatorcontrib>Pitarke, J M</creatorcontrib><creatorcontrib>Sindona, A</creatorcontrib><title>Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations-known as plasmons-when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.</description><subject>Arrays</subject><subject>Electronics</subject><subject>Energy gaps (solid state)</subject><subject>Graphene</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Photonic band gaps</subject><subject>Plasmons</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMotlb_QsnRy-pkk90kx1K0ClWL6HnJZmftSndTk63Sf29Kq3jzMAwM7715fISMGVwxBvx6sdyGZ_ycY9_Hg4yTK2BHZMhA6kQyJo7JEICzRAPIATkL4R0AWJqrUzJIZZ4zCXpIZouVCa3r6IOrMFBX05k36yV2SB9N53xTlq4L9Kvpl3SBvnFVY2n0dMbTifeme8MWuz6ck5ParAJeHPaIvN7evEzvkvnT7H46mSeWa9knQkCuULFKc2ulSoUpbZVVdSxqcqm5tpUAXppMcWGN1aUFaVIltNWp4NzwEbnc5669-9hg6Iu2CRZXsRG6TSiYEpliYsfof2nKgSsGWZTme6n1LgSPdbH2TWv8tmBQ7LKKP7zjQRZ73tE4PvzYlC1Wv7YfwPwbPtN94w</recordid><startdate>20160909</startdate><enddate>20160909</enddate><creator>Vacacela Gomez, C</creator><creator>Pisarra, M</creator><creator>Gravina, M</creator><creator>Pitarke, J M</creator><creator>Sindona, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160909</creationdate><title>Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements</title><author>Vacacela Gomez, C ; Pisarra, M ; Gravina, M ; Pitarke, J M ; Sindona, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrays</topic><topic>Electronics</topic><topic>Energy gaps (solid state)</topic><topic>Graphene</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Photonic band gaps</topic><topic>Plasmons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vacacela Gomez, C</creatorcontrib><creatorcontrib>Pisarra, M</creatorcontrib><creatorcontrib>Gravina, M</creatorcontrib><creatorcontrib>Pitarke, J M</creatorcontrib><creatorcontrib>Sindona, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vacacela Gomez, C</au><au>Pisarra, M</au><au>Gravina, M</au><au>Pitarke, J M</au><au>Sindona, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-09-09</date><risdate>2016</risdate><volume>117</volume><issue>11</issue><spage>116801</spage><epage>116801</epage><pages>116801-116801</pages><artnum>116801</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Among their amazing properties, graphene and related low-dimensional materials show quantized charge-density fluctuations-known as plasmons-when exposed to photons or electrons of suitable energies. Graphene nanoribbons offer an enhanced tunability of these resonant modes, due to their geometrically controllable band gaps. The formidable effort made over recent years in developing graphene-based technologies is however weakened by a lack of predictive modeling approaches that draw upon available ab initio methods. An example of such a framework is presented here, focusing on narrow-width graphene nanoribbons, organized in periodic planar arrays. Time-dependent density-functional calculations reveal unprecedented plasmon modes of different nature at visible to infrared energies. Specifically, semimetallic (zigzag) nanoribbons display an intraband plasmon following the energy-momentum dispersion of a two-dimensional electron gas. Semiconducting (armchair) nanoribbons are instead characterized by two distinct intraband and interband plasmons, whose fascinating interplay is extremely responsive to either injection of charge carriers or increase in electronic temperature. These oscillations share some common trends with recent nanoinfrared imaging of confined edge and surface plasmon modes detected in graphene nanoribbons of 100-500 nm width.</abstract><cop>United States</cop><pmid>27661709</pmid><doi>10.1103/PhysRevLett.117.116801</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-09, Vol.117 (11), p.116801-116801, Article 116801
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1845814110
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Arrays
Electronics
Energy gaps (solid state)
Graphene
Mathematical models
Nanostructure
Photonic band gaps
Plasmons
title Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%20Modes%20of%20Graphene%20Nanoribbons%20with%20Periodic%20Planar%20Arrangements&rft.jtitle=Physical%20review%20letters&rft.au=Vacacela%20Gomez,%20C&rft.date=2016-09-09&rft.volume=117&rft.issue=11&rft.spage=116801&rft.epage=116801&rft.pages=116801-116801&rft.artnum=116801&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.117.116801&rft_dat=%3Cproquest_cross%3E1823038105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-44068e81d93cc7824abcd5df031a67939cd403ba5834cac9bc07a2849c92433a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1823038105&rft_id=info:pmid/27661709&rfr_iscdi=true