Loading…
Signal-to-noise ratio and dose to the lens of the eye for computed tomography examination of the brain using an automatic tube current modulation system
Purpose The study aimed to evaluate the image quality in terms of signal-to-noise ratio (SNR) and dose to the lens of the eye and the other nearby organs from the CT brain scan using an automatic tube current modulation (ATCM) system with or without CT gantry tilt is needed. Methods An anthropomorph...
Saved in:
Published in: | Emergency radiology 2017-06, Vol.24 (3), p.233-239 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
The study aimed to evaluate the image quality in terms of signal-to-noise ratio (SNR) and dose to the lens of the eye and the other nearby organs from the CT brain scan using an automatic tube current modulation (ATCM) system with or without CT gantry tilt is needed.
Methods
An anthropomorphic phantom was scanned with different settings including use of different ATCM, fixed tube current time product (mAs) settings and degree angles of gantry tilt. Gafchromic film XR-QA2 was used to measure absorbed dose of the organs. Relative doses and SNR for the various scan settings were compared with the reference setting of the fixed 330 mAs.
Results
Average absorbed dose for the lens of the eyes varied from 8.7 to 21.7 mGy. The use of the ATCM system with the gantry tilt resulted in up to 60% decrease in the dose to the lens of the eye. SNR significantly decreased while tilting the gantry using the fixed mAs techniques, compared to that of the reference setting. However, there were no statistical significant differences for SNRs between the reference setting and all ATCM settings.
Conclusions
Compared to the reference setting of the fixed effective mAs, using the ATCM system and appropriate tilting, the gantry resulted in a substantial decrease in the dose to the lens of the eye while preserving signal-to-noise ratio. CT brain examination should be carefully controlled to optimize dose for lens of the eye and image quality of the examination. |
---|---|
ISSN: | 1070-3004 1438-1435 |
DOI: | 10.1007/s10140-016-1470-6 |