Loading…

CT-707, a Novel FAK Inhibitor, Synergizes with Cabozantinib to Suppress Hepatocellular Carcinoma by Blocking Cabozantinib-Induced FAK Activation

Hepatocellular carcinoma is among the leading causes of cancer-related deaths worldwide, and the development of new treatment regimens is urgently needed to improve therapeutic approach. In our study, we found that the combination of a Met inhibitor, cabozantinib, and a novel FAK inhibitor, CT-707,...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cancer therapeutics 2016-12, Vol.15 (12), p.2916-2925
Main Authors: Wang, Dan-Dan, Chen, Ying, Chen, Zi-Bo, Yan, Fang-Jie, Dai, Xiao-Yang, Ying, Mei-Dan, Cao, Ji, Ma, Jian, Luo, Pei-Hua, Han, Yong-Xin, Peng, Yong, Sun, Ying-Hui, Zhang, Hui, He, Qiao-Jun, Yang, Bo, Zhu, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hepatocellular carcinoma is among the leading causes of cancer-related deaths worldwide, and the development of new treatment regimens is urgently needed to improve therapeutic approach. In our study, we found that the combination of a Met inhibitor, cabozantinib, and a novel FAK inhibitor, CT-707, exerted synergistic antitumor effects against hepatocellular carcinoma in vitro and in vivo Interestingly, further studies showed that therapeutic concentrations of cabozantinib increased the phosphorylation of FAK, which might attenuate the antitumor activity of cabozantinib. The simultaneous exposure to CT-707 effectively inhibited the activation of FAK that was induced by cabozantinib, which contributes to the synergistic effect of the combination. Furthermore, cabozantinib increased the mRNA and protein levels of integrin α5, which is a canonical upstream of FAK, and the introduction of cilengitide to block integrin function could abrogate FAK activation by cabozantinib, indicating that cabozantinib upregulated the phosphorylation of FAK in an integrin-dependent manner. Similar synergy was also observed on PHA-665752, another selective MET inhibitor, indicating that this observation might be a common characteristic of MET-targeting strategies. Our findings not only favor the development of the novel FAK inhibitor CT-707 as a therapeutic agent against hepatocellular carcinoma but also provide a new strategy of combining MET and FAK inhibitors to potentiate the anticancer activities of these two types of agents for treating hepatocellular carcinoma patients. Mol Cancer Ther; 15(12); 2916-25. ©2016 AACR.
ISSN:1535-7163
1538-8514
DOI:10.1158/1535-7163.MCT-16-0282