Loading…
Uncertainty of current understanding regarding OBT formation in plants
Radiological impact models are important tools that support nuclear safety. For tritium, a special radionuclide that readily enters the life cycle, the processes involved in its transport into the environment are complex and inadequately understood. For example, tritiated water (HTO) enters plants b...
Saved in:
Published in: | Journal of environmental radioactivity 2017-02, Vol.167, p.134-149 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3 |
container_end_page | 149 |
container_issue | |
container_start_page | 134 |
container_title | Journal of environmental radioactivity |
container_volume | 167 |
creator | Melintescu, A. Galeriu, D. |
description | Radiological impact models are important tools that support nuclear safety. For tritium, a special radionuclide that readily enters the life cycle, the processes involved in its transport into the environment are complex and inadequately understood. For example, tritiated water (HTO) enters plants by leaf and root uptake and is converted to organically bound tritium (OBT) in exchangeable and non-exchangeable forms; however, the observed OBT/HTO ratios in crops exhibit large variability and contradict the current models for routine releases. Non-routine or spike releases of tritium further complicate the prediction of OBT formation. The experimental data for a short and intense atmospheric contamination of wheat are presented together with various models’ predictions. The experimental data on wheat demonstrate that the OBT formation is a long process, it is dependent on receptor location and stack dynamics, there are differences between night and day releases, and the HTO dynamics in leaf and ear is a very important contributor to OBT formation.
•Variability of OBT/HTO ratio due to non-equilibrium situation in field conditions.•OBT/HTO ratio depends on the release dynamics, receptor location and plant type.•Short term emission and routine emission affecting the public dose.•Improved parameters are proposed for routine emission models.•OBT formation is a long process with differences between day and night releases. |
doi_str_mv | 10.1016/j.jenvrad.2016.11.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1846024571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0265931X16302648</els_id><sourcerecordid>1846024571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqs_Qdmjl10z2a_kJCp-QaGXCt5CNpmVlDZbk6zgvze11aun-eCdeWceQi6AFkChuV4WS3SfXpmCpbIAKChrDsgEeCtyaCk9JJPUqXNRwtsJOQ1hSWnqc3ZMTlgroGGCT8jjq9Poo7IufmVDn-nRe3QxG51BH6Jyxrr3zOO78j_Z_G6R9YNfq2gHl1mXbVbKxXBGjnq1Cni-j1Py-viwuH_OZ_Onl_vbWa4rYDGvWVULzrqSAwpUqKsGoa21KVWLjYK-5oLXwDpNq7rRWijRdYCl6TmtKqbKKbna7d344WPEEOXaBo2rdAQOY5DAq4YmkxaStN5JtR9C8NjLjbdr5b8kULlFKJdyj1BuEUoAmYClucu9xdit0fxN_TJLgpudANOjnxa9DNpiwmisRx2lGew_Ft_Mt4VZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846024571</pqid></control><display><type>article</type><title>Uncertainty of current understanding regarding OBT formation in plants</title><source>ScienceDirect Freedom Collection</source><creator>Melintescu, A. ; Galeriu, D.</creator><creatorcontrib>Melintescu, A. ; Galeriu, D.</creatorcontrib><description>Radiological impact models are important tools that support nuclear safety. For tritium, a special radionuclide that readily enters the life cycle, the processes involved in its transport into the environment are complex and inadequately understood. For example, tritiated water (HTO) enters plants by leaf and root uptake and is converted to organically bound tritium (OBT) in exchangeable and non-exchangeable forms; however, the observed OBT/HTO ratios in crops exhibit large variability and contradict the current models for routine releases. Non-routine or spike releases of tritium further complicate the prediction of OBT formation. The experimental data for a short and intense atmospheric contamination of wheat are presented together with various models’ predictions. The experimental data on wheat demonstrate that the OBT formation is a long process, it is dependent on receptor location and stack dynamics, there are differences between night and day releases, and the HTO dynamics in leaf and ear is a very important contributor to OBT formation.
•Variability of OBT/HTO ratio due to non-equilibrium situation in field conditions.•OBT/HTO ratio depends on the release dynamics, receptor location and plant type.•Short term emission and routine emission affecting the public dose.•Improved parameters are proposed for routine emission models.•OBT formation is a long process with differences between day and night releases.</description><identifier>ISSN: 0265-931X</identifier><identifier>EISSN: 1879-1700</identifier><identifier>DOI: 10.1016/j.jenvrad.2016.11.026</identifier><identifier>PMID: 27916298</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Crops ; Models, Theoretical ; Organically bound tritium ; Plants - metabolism ; Radiation Monitoring ; Routine and short term emission ; Tritiated water ; Tritium - analysis ; Tritium - metabolism ; Uncertainty</subject><ispartof>Journal of environmental radioactivity, 2017-02, Vol.167, p.134-149</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3</citedby><cites>FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27916298$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Melintescu, A.</creatorcontrib><creatorcontrib>Galeriu, D.</creatorcontrib><title>Uncertainty of current understanding regarding OBT formation in plants</title><title>Journal of environmental radioactivity</title><addtitle>J Environ Radioact</addtitle><description>Radiological impact models are important tools that support nuclear safety. For tritium, a special radionuclide that readily enters the life cycle, the processes involved in its transport into the environment are complex and inadequately understood. For example, tritiated water (HTO) enters plants by leaf and root uptake and is converted to organically bound tritium (OBT) in exchangeable and non-exchangeable forms; however, the observed OBT/HTO ratios in crops exhibit large variability and contradict the current models for routine releases. Non-routine or spike releases of tritium further complicate the prediction of OBT formation. The experimental data for a short and intense atmospheric contamination of wheat are presented together with various models’ predictions. The experimental data on wheat demonstrate that the OBT formation is a long process, it is dependent on receptor location and stack dynamics, there are differences between night and day releases, and the HTO dynamics in leaf and ear is a very important contributor to OBT formation.
•Variability of OBT/HTO ratio due to non-equilibrium situation in field conditions.•OBT/HTO ratio depends on the release dynamics, receptor location and plant type.•Short term emission and routine emission affecting the public dose.•Improved parameters are proposed for routine emission models.•OBT formation is a long process with differences between day and night releases.</description><subject>Crops</subject><subject>Models, Theoretical</subject><subject>Organically bound tritium</subject><subject>Plants - metabolism</subject><subject>Radiation Monitoring</subject><subject>Routine and short term emission</subject><subject>Tritiated water</subject><subject>Tritium - analysis</subject><subject>Tritium - metabolism</subject><subject>Uncertainty</subject><issn>0265-931X</issn><issn>1879-1700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWqs_Qdmjl10z2a_kJCp-QaGXCt5CNpmVlDZbk6zgvze11aun-eCdeWceQi6AFkChuV4WS3SfXpmCpbIAKChrDsgEeCtyaCk9JJPUqXNRwtsJOQ1hSWnqc3ZMTlgroGGCT8jjq9Poo7IufmVDn-nRe3QxG51BH6Jyxrr3zOO78j_Z_G6R9YNfq2gHl1mXbVbKxXBGjnq1Cni-j1Py-viwuH_OZ_Onl_vbWa4rYDGvWVULzrqSAwpUqKsGoa21KVWLjYK-5oLXwDpNq7rRWijRdYCl6TmtKqbKKbna7d344WPEEOXaBo2rdAQOY5DAq4YmkxaStN5JtR9C8NjLjbdr5b8kULlFKJdyj1BuEUoAmYClucu9xdit0fxN_TJLgpudANOjnxa9DNpiwmisRx2lGew_Ft_Mt4VZ</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Melintescu, A.</creator><creator>Galeriu, D.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Uncertainty of current understanding regarding OBT formation in plants</title><author>Melintescu, A. ; Galeriu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crops</topic><topic>Models, Theoretical</topic><topic>Organically bound tritium</topic><topic>Plants - metabolism</topic><topic>Radiation Monitoring</topic><topic>Routine and short term emission</topic><topic>Tritiated water</topic><topic>Tritium - analysis</topic><topic>Tritium - metabolism</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melintescu, A.</creatorcontrib><creatorcontrib>Galeriu, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental radioactivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melintescu, A.</au><au>Galeriu, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty of current understanding regarding OBT formation in plants</atitle><jtitle>Journal of environmental radioactivity</jtitle><addtitle>J Environ Radioact</addtitle><date>2017-02</date><risdate>2017</risdate><volume>167</volume><spage>134</spage><epage>149</epage><pages>134-149</pages><issn>0265-931X</issn><eissn>1879-1700</eissn><abstract>Radiological impact models are important tools that support nuclear safety. For tritium, a special radionuclide that readily enters the life cycle, the processes involved in its transport into the environment are complex and inadequately understood. For example, tritiated water (HTO) enters plants by leaf and root uptake and is converted to organically bound tritium (OBT) in exchangeable and non-exchangeable forms; however, the observed OBT/HTO ratios in crops exhibit large variability and contradict the current models for routine releases. Non-routine or spike releases of tritium further complicate the prediction of OBT formation. The experimental data for a short and intense atmospheric contamination of wheat are presented together with various models’ predictions. The experimental data on wheat demonstrate that the OBT formation is a long process, it is dependent on receptor location and stack dynamics, there are differences between night and day releases, and the HTO dynamics in leaf and ear is a very important contributor to OBT formation.
•Variability of OBT/HTO ratio due to non-equilibrium situation in field conditions.•OBT/HTO ratio depends on the release dynamics, receptor location and plant type.•Short term emission and routine emission affecting the public dose.•Improved parameters are proposed for routine emission models.•OBT formation is a long process with differences between day and night releases.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27916298</pmid><doi>10.1016/j.jenvrad.2016.11.026</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-931X |
ispartof | Journal of environmental radioactivity, 2017-02, Vol.167, p.134-149 |
issn | 0265-931X 1879-1700 |
language | eng |
recordid | cdi_proquest_miscellaneous_1846024571 |
source | ScienceDirect Freedom Collection |
subjects | Crops Models, Theoretical Organically bound tritium Plants - metabolism Radiation Monitoring Routine and short term emission Tritiated water Tritium - analysis Tritium - metabolism Uncertainty |
title | Uncertainty of current understanding regarding OBT formation in plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20of%20current%20understanding%20regarding%20OBT%20formation%20in%20plants&rft.jtitle=Journal%20of%20environmental%20radioactivity&rft.au=Melintescu,%20A.&rft.date=2017-02&rft.volume=167&rft.spage=134&rft.epage=149&rft.pages=134-149&rft.issn=0265-931X&rft.eissn=1879-1700&rft_id=info:doi/10.1016/j.jenvrad.2016.11.026&rft_dat=%3Cproquest_cross%3E1846024571%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-5245982b381e9eaec46e175cd3a7e6a1f5898512bc0456cc9a9bb1e3df80442a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1846024571&rft_id=info:pmid/27916298&rfr_iscdi=true |