Loading…

Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths – a review on existing data

Abstract Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 pub...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology letters 2017-01, Vol.364 (2), p.fnw270
Main Authors: Hessling, M., Spellerberg, B., Hoenes, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Visible light has strong disinfectant properties, a fact that is not well known in comparison to the antibacterial properties of UV light. This review compiles the published data on bacterial inactivation caused by visible light and endogenous photosensitizers. It evaluates more than 50 published studies containing information on about 40 different bacterial species irradiated within the spectral range from 380 to 780 nm. In the available data a high variability of photoinactivation sensitivity is observed, which may be caused by undefined illumination conditions. Under aerobic conditions almost all bacteria except spores should be reduced by at least three log-levels with a dose of about 500 J cm−2 of 405 nm irradiation, including both Gram-positive as well as Gram-negative microorganisms. Irradiation of 470 nm is also appropriate for photoinactivating all bacteria species investigated so far but compared to 405 nm illumination it is less effective by a factor between 2 and 5. The spectral dependence of the observed photoinactivation sensitivities gives reason to the assumption that a so far unknown photosensitizer may be involved at 470 nm photoinactivation. Visible violet and blue light is capable of disinfecting all bacteria investigated so far.
ISSN:1574-6968
1574-6968
DOI:10.1093/femsle/fnw270