Loading…

Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes

SignificanceThe wide availability of sweet flavours has been hypothesised as a factor in the popularity of electronic cigarette (ECIG), especially among youth. Saccharides, which are commonly used to impart a sweet flavour to ECIG liquids, thermally degrade to produce toxic compounds, like aldehydes...

Full description

Saved in:
Bibliographic Details
Published in:Tobacco control 2016-11, Vol.25 (Suppl 2), p.ii88-ii93
Main Authors: Soussy, Sarah, EL-Hellani, Ahmad, Baalbaki, Rima, Salman, Rola, Shihadeh, Alan, Saliba, Najat A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SignificanceThe wide availability of sweet flavours has been hypothesised as a factor in the popularity of electronic cigarette (ECIG), especially among youth. Saccharides, which are commonly used to impart a sweet flavour to ECIG liquids, thermally degrade to produce toxic compounds, like aldehydes and furans. This study investigates the formation of furanic compounds in aerosols when ECIG liquid solutions of varying sweetener concentrations are vaped under different power and puff duration.MethodsLiquids are prepared by mixing aqueous sucrose, glucose or sorbitol solutions to a 70/30 propylene glycol/glycerin solution. Aerosols are generated and trapped on filter pads using a commercially available ECIG operating at 4.3 and 10.8 W and 4 and 8 s puff duration. Extraction, elimination of matrix interference and quantification are achieved using novel solid phase extraction and gas chromatography tandem mass spectrometry methods (GC-MS).ResultsWell-resolved GC peaks of 5-hydroxymethylfurfural (HMF) and furfural (FA) are detected. Both HMF and FA are quantified in the aerosols of sweet-flavoured e-liquids under various vaping conditions. Levels of furan emissions are significantly correlated with electric power and sweetener concentration and not with puff duration. Unlike saccharides, the formation of HMF and FA from a sugar alcohol is negligible.ConclusionsThe addition of sweeteners to ECIG liquids exposes ECIG user to furans, a toxic class of compounds. Under certain conditions, the per-puff yield of HMF and FA in ECIG emissions is comparable to values reported for combustible cigarettes.
ISSN:0964-4563
1468-3318
DOI:10.1136/tobaccocontrol-2016-053220