Loading…

Kinetic analysis of internalization of white spot syndrome virus by haemocyte subpopulations of penaeid shrimp, Litopenaeus vannamei (Boone), and the outcome for virus and cell

Little is known about the innate antiviral defence of shrimp haemocytes. In this context, the haemocytes of penaeid shrimp Litopenaeus vannamei (Boone) were separated by iodixanol density gradient centrifugation into five subpopulations (sub): sub 1 (hyalinocytes), sub 2 and 3 (prohyalinocytes), sub...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fish diseases 2016-12, Vol.39 (12), p.1477-1493
Main Authors: Tuan, V V, De Gryse, G M A, Thuong, K V, Bossier, P, Nauwynck, H J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Little is known about the innate antiviral defence of shrimp haemocytes. In this context, the haemocytes of penaeid shrimp Litopenaeus vannamei (Boone) were separated by iodixanol density gradient centrifugation into five subpopulations (sub): sub 1 (hyalinocytes), sub 2 and 3 (prohyalinocytes), sub 4 (semigranulocytes) and sub 5 (granulocytes) and exposed to beads, white spot syndrome virus (WSSV) and ultraviolet (UV)‐killed WSSV. In a first experiment, the uptake of beads, white spot syndrome virus (WSSV) and UV‐killed WSSV by these different haemocyte subpopulations was investigated using confocal microscopy. Only haemocytes of sub 1, 4 and 5 were internalizing beads, WSSV and UV‐killed WSSV. Beads were engulfed by a much larger percentage of cells (91.2 in sub 1; 84.1 in sub 4 and 58.1 in sub 5) compared to WSSV (9.6 in sub 1; 10.5 in sub 4 and 7.9 in sub 5) and UV‐killed WSSV (12.9 in sub 1; 13.3 in sub 4; and 11.8 in sub 5). In a second experiment, it was shown that upon internalization, WSS virions lost their envelope most probably by fusion with the cellular membrane of the endosome (starting between 30 and 60 min post‐inoculation) and that afterwards the capsid started to become disintegrated (from 360 min post‐inoculation). Expression of new viral proteins was not observed. Incubation of haemocyte subpopulations with WSSV but not with UV‐killed WSSV and polystyrene beads resulted in a significant drop in haemocyte viability. To find the underlying mechanism, a third experiment was performed in which haemocyte subpopulations were exposed to a short WSSV DNA fragment (VP19) and CpG ODNs. These small DNA fragments induced cell death. In conclusion, WSSV is efficiently internalized by hyalinocytes, semigranulocytes and granulocytes, after which the virus loses its envelope; as soon as the capsids start to disintegrate, cell death is activated, which in part may be explained by the exposure of viral DNA to cellular‐sensing molecules.
ISSN:0140-7775
1365-2761
DOI:10.1111/jfd.12482