Loading…
The satiety factor oleoylethanolamide impacts hepatic lipid and glucose metabolism in goldfish
Oleoylethanolamide (OEA) is an acylethanolamide synthesized mainly in the gastrointestinal tract with known effects in mammals on food intake and body mass through activation of peroxisome proliferator-activated receptor type α (PPARα). Since we previously demonstrated that acute treatment with OEA...
Saved in:
Published in: | Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 2016-12, Vol.186 (8), p.1009-1021 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oleoylethanolamide (OEA) is an acylethanolamide synthesized mainly in the gastrointestinal tract with known effects in mammals on food intake and body mass through activation of peroxisome proliferator-activated receptor type α (PPARα). Since we previously demonstrated that acute treatment with OEA in goldfish resulted in decreased food intake and locomotor activity, as in mammals, we hypothesize that OEA would be involved in the control of energy metabolism in fish. Therefore, we assessed the effects of acute (for 6 h) and chronic (for 11 days) treatments with OEA (5 µg g
−1
body mass) on metabolite concentrations and enzyme activities related to glucose and lipid metabolism in liver of goldfish (
Carassius auratus
). In the chronic treatment, OEA impairs the increase in body mass and reduces locomotor activity, without any signs of stress. The lipolytic capacity in liver decreased after both acute and chronic OEA treatments, whereas lipogenic capacity increased after acute and decreased after chronic treatment with OEA. These results are different from those observed to date in mammalian adipose tissue, but not so different from those known in liver, and might be attributed to the absence of changes in the expression of
pparα
, and/or to the increase in the expression of the clock gene
bmal1a
after chronic OEA treatment. As for glucose metabolism, a clear decrease in the capacity of hepatic tissue to use glucose was observed in OEA-treated fish. These results support an important role for OEA in the regulation of liver lipid and glucose metabolism, and could relate to the metabolic changes associated with circadian activity and the regulation of food intake in fish. |
---|---|
ISSN: | 0174-1578 1432-136X |
DOI: | 10.1007/s00360-016-1009-x |