Loading…

Preventive effects of citrulline on Western diet-induced non-alcoholic fatty liver disease in rats

A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we...

Full description

Saved in:
Bibliographic Details
Published in:British journal of nutrition 2016-07, Vol.116 (2), p.191-203
Main Authors: Jegatheesan, Prasanthi, Beutheu, Stéphanie, Freese, Kim, Waligora-Dupriet, Anne-Judith, Nubret, Esther, Butel, Marie-Jo, Bergheim, Ina, De Bandt, Jean-Pascal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Western diet induces insulin resistance, liver steatosis (non-alcoholic fatty liver disease (NAFLD)) and intestinal dysbiosis, leading to increased gut permeability and bacterial translocation, thus contributing to the progression of NAFLD to non-alcoholic steatohepatitis. In the present study, we sought, in a model of Western diet-induced NAFLD, to determine whether citrulline (Cit), an amino acid that regulates protein and energy metabolism, could decrease Western diet-induced liver injuries, as well as the mechanisms involved. Sprague–Dawley rats were fed a high-fat diet (45 %) and fructose (30 %) in drinking water or a control diet associated with water (group C) for 8 weeks. The high-fat, high-fructose diet (Western diet) was fed either alone (group WD) or with Cit (1 g/kg per d) (group WDC) or an isonitrogenous amount of non-essential amino acids (group WDA). We evaluated nutritional and metabolic status, liver function, intestinal barrier function, gut microbiota and splanchnic inflammatory status. Cit led to a lower level of hepatic TAG restricted to microvesicular lipid droplets and to a lower mRNA expression of CCAAT-enhancer-binding protein homologous protein, a marker of endoplasmic reticulum stress, of pro-inflammatory cytokines Il6 (P
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114516001793