Loading…

Contribution of organic toxicants to multiple stress in river ecosystems

Summary River ecosystems are threatened by multiple stressors, including habitat degradation, pollution and invasive species. However, freshwater ecologists have largely disregarded the contribution of toxicants to stress in rivers, whereas ecotoxicologists have primarily examined toxicant effects i...

Full description

Saved in:
Bibliographic Details
Published in:Freshwater biology 2016-12, Vol.61 (12), p.2116-2128
Main Authors: Schäfer, Ralf B., Kühn, Bernhard, Malaj, Egina, König, Anne, Gergs, René
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary River ecosystems are threatened by multiple stressors, including habitat degradation, pollution and invasive species. However, freshwater ecologists have largely disregarded the contribution of toxicants to stress in rivers, whereas ecotoxicologists have primarily examined toxicant effects in artificial systems. As a result, there is a paucity of information on the co‐occurrence of organic toxicants with other stressors and on the relative importance of toxicants for overall ecological risk in rivers. We used monitoring data for German rivers to analyse the individual and joint occurrence of four stressors: habitat degradation, invasive species, nutrient pollution and organic toxicants. All stressors were examined for ecological risks in terms of whether they exceeded low‐ and high‐risk thresholds derived from published studies and regulatory thresholds. Nutrients and habitat degradation exceeded low and high risk thresholds at c. 85% of the sites and invasive species and organic toxicants at c. 50% of the sites. At least one stressor exceeded thresholds at all sites for which data on all four stressors were available. Toxicity showed weak positive correlations with nutrients and habitat degradation (0.2 
ISSN:0046-5070
1365-2427
DOI:10.1111/fwb.12811