Loading…

Eupatilin prevents H2O2-induced oxidative stress and apoptosis in human retinal pigment epithelial cells

Eupatilin, a pharmacologically active flavone derived from the Artemisia plant species, is known to possess anti-oxidant activity. However, the effects of eupatilin on oxidative stress-induced retinal damage in retinal pigment epithelium (RPE) cells and the potential mechanisms involved have not bee...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicine & pharmacotherapy 2017-01, Vol.85, p.136-140
Main Authors: Du, Lei, Chen, Jia, Xing, Yi-qiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eupatilin, a pharmacologically active flavone derived from the Artemisia plant species, is known to possess anti-oxidant activity. However, the effects of eupatilin on oxidative stress-induced retinal damage in retinal pigment epithelium (RPE) cells and the potential mechanisms involved have not been explored. Therefore, the aim of this study was to investigate the effects of eupatilin on oxidative stress-induced retinal damage in RPE cells. Our results showed that eupatilin significantly attenuated H2O2-induced cell injury and ROS production in ARPE-19 cells. In addition, eupatilin pretreatment greatly upregulated Bcl-2 expression, downregulated Bax expression, as well as suppressed caspase-3 activity in ARPE-19 cells exposed to H2O2. Furthermore, eupatilin pretreatment markedly enhanced phosphorylation levels of PI3K and Akt in ARPE-19 cells exposed to H2O2. In conclusion, our data showed that eupatilin protected against H2O2-induced oxidative stress and apoptosis through the activation of PI3K/Akt signaling pathway in ARPE-19 cells. Thus, eupatilin may be useful for the prevention or treatment of proliferative vitreoretinopathy (PVR).
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2016.11.108