Loading…
Modeling infiltration during complex rainfall sequences
An extension of the conceptual model earlier developed by Smith et al. (1993) is presented. Their basic model considered the problem of point infiltration during a storm consisting of two parts separated by a rainfall hiatus, with surface saturation and runoff occurring in each part. The model is he...
Saved in:
Published in: | Water resources research 1994-10, Vol.30 (10), p.2777-2784 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An extension of the conceptual model earlier developed by Smith et al. (1993) is presented. Their basic model considered the problem of point infiltration during a storm consisting of two parts separated by a rainfall hiatus, with surface saturation and runoff occurring in each part. The model is here extended toward further generality, including the representation of a sequence of infiltration-redistribution cycles with situations not leading to soil surface saturation, and rainfall periods of intensity less than the soil infiltration capacity. The model employs at most a two-part profile for simulating the actual one. When the surface flux is not at capacity, it uses a slightly modified version of the Parlange et al. (1985) model for description of increases in the surface water content and the Smith et al. (1993) redistribution equation for decreases. Criteria for the development of compound profiles and for their reduction to single profiles are also incorporated. The extended model is tested by comparison with numerical solutions of Richards's equation, carried out for a variety of experiments upon two contrasting soils. The model applications yield very accurate results and support its use as part of a watershed hydrologic model |
---|---|
ISSN: | 0043-1397 1944-7973 |
DOI: | 10.1029/94WR00951 |