Loading…

Modeling infiltration during complex rainfall sequences

An extension of the conceptual model earlier developed by Smith et al. (1993) is presented. Their basic model considered the problem of point infiltration during a storm consisting of two parts separated by a rainfall hiatus, with surface saturation and runoff occurring in each part. The model is he...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 1994-10, Vol.30 (10), p.2777-2784
Main Authors: Corradini, C, Melone, F, Smith, R.E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An extension of the conceptual model earlier developed by Smith et al. (1993) is presented. Their basic model considered the problem of point infiltration during a storm consisting of two parts separated by a rainfall hiatus, with surface saturation and runoff occurring in each part. The model is here extended toward further generality, including the representation of a sequence of infiltration-redistribution cycles with situations not leading to soil surface saturation, and rainfall periods of intensity less than the soil infiltration capacity. The model employs at most a two-part profile for simulating the actual one. When the surface flux is not at capacity, it uses a slightly modified version of the Parlange et al. (1985) model for description of increases in the surface water content and the Smith et al. (1993) redistribution equation for decreases. Criteria for the development of compound profiles and for their reduction to single profiles are also incorporated. The extended model is tested by comparison with numerical solutions of Richards's equation, carried out for a variety of experiments upon two contrasting soils. The model applications yield very accurate results and support its use as part of a watershed hydrologic model
ISSN:0043-1397
1944-7973
DOI:10.1029/94WR00951