Loading…

Anticancer Activity of Sodium Stibogluconate in Synergy with IFNs

Cancer cell resistance limits the efficacy of IFNs. In this study, we show that sodium stibogluconate (SSG) and IFN-alpha synergized to overcome IFN-alpha resistance in various human cancer cell lines in culture and eradicated IFN-alpha-refractory WM9 human melanoma tumors in nude mice with no obvio...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2002-11, Vol.169 (10), p.5978-5985
Main Authors: Yi, Taolin, Pathak, Manas K, Lindner, Daniel J, Ketterer, Michael E, Farver, Carol, Borden, Ernest C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer cell resistance limits the efficacy of IFNs. In this study, we show that sodium stibogluconate (SSG) and IFN-alpha synergized to overcome IFN-alpha resistance in various human cancer cell lines in culture and eradicated IFN-alpha-refractory WM9 human melanoma tumors in nude mice with no obvious toxicity. SSG enhanced IFN-alpha-induced Stat1 tyrosine phosphorylation, inactivated intracellular SHP-1 and SHP-2 that negatively regulate IFN signaling, and induced cellular protein tyrosine phosphorylation in cancer cell lines. These effects are consistent with inactivation of phosphatases as the basis of SSG anticancer activity. Characterization of SSG by chromatography revealed that only selective compounds in SSG were effective protein tyrosine phosphatase inhibitors. These observations suggest the potential of SSG as a clinically usable protein tyrosine phosphatase inhibitor in cancer treatment and provide insights for developing phosphatase-targeted therapeutics.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.169.10.5978