Loading…

Ediacaran distributions in space and time: testing assemblage concepts of earliest macroscopic body fossils

The mid-late Ediacaran Period (~579–541 Ma) is characterized by globally distributed marine soft-bodied organisms of unclear phylogenetic affinities colloquially called the “Ediacara biota.” Despite an absence of systematic agreement, previous workers have tested for underlying factors that may cont...

Full description

Saved in:
Bibliographic Details
Published in:Paleobiology 2016-11, Vol.42 (4), p.574-594
Main Authors: Boag, Thomas H, Darroch, Simon A. F, Laflamme, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mid-late Ediacaran Period (~579–541 Ma) is characterized by globally distributed marine soft-bodied organisms of unclear phylogenetic affinities colloquially called the “Ediacara biota.” Despite an absence of systematic agreement, previous workers have tested for underlying factors that may control the occurrence of Ediacaran macrofossils in space and time. Three taxonomically distinct “assemblages,” termed the Avalon, White Sea, and Nama, were identified and informally incorporated into Ediacaran biostratigraphy. After ~15 years of new fossil discoveries and taxonomic revision, we retest the validity of these assemblages using a comprehensive database of Ediacaran macrofossil occurrences. Using multivariate analysis, we also test the degree to which taphonomy, time, and paleoenvironment explain the taxonomic composition of these assemblages. We find that: (1) the three assemblages remain distinct taxonomic groupings; (2) there is little support for a large-scale litho-taphonomic bias present in the Ediacaran; and (3) there is significant chronostratigraphic overlap between the taxonomically and geographically distinct Avalonian and White Sea assemblages ca. 560–557 Ma. Furthermore, both assemblages show narrow bathymetric ranges, reinforcing that they were paleoenvironmental–ecological biotopes and spatially restricted in marine settings. Meanwhile, the Nama assemblage appears to be a unique faunal stage, defined by a global loss of diversity, coincident with a noted expansion of bathymetrically unrestricted, long-ranging Ediacara taxa. These data reinforce that Ediacaran biodiversity and stratigraphic ranges of its representative taxa must first statistically account for varying likelihood of preservation at a local scale to ultimately aggregate the Ediacaran macrofossil record into a global biostratigraphic context.
ISSN:0094-8373
1938-5331
DOI:10.1017/pab.2016.20