Loading…

Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids

Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2017-01, Vol.121 (3), p.577-588
Main Authors: Halat, Peter, Seeger, Zoe L., Barrera Acevedo, Santiago, Izgorodina, Ekaterina I.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53
cites cdi_FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53
container_end_page 588
container_issue 3
container_start_page 577
container_title The journal of physical chemistry. B
container_volume 121
creator Halat, Peter
Seeger, Zoe L.
Barrera Acevedo, Santiago
Izgorodina, Ekaterina I.
description Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the accuracy of the method by accounting for all possible two-body and three-body interactions. In this work a comprehensive application of the FMO approach in combination with a second order of Møller–Plesset perturbation theory method, MP2, is presented for multiscale clusters of ionic liquids such as [C1mim]­X, [C1mpyr]­X, [C2py]­X, and [NMe4]­X, where X = chloride and tetrafluoroborates, BF4 –, with the clusters varying in size from 4, 8, 16, to 32 ion pairs. Reliable cutoff criteria for the inclusion of two-body and three-body interactions are identified for both HF energy and MP2 correlation energy to achieve the desired accuracy of 1 kJ mol–1. The importance of two-body and three-body interactions in ionic liquids is also discussed.
doi_str_mv 10.1021/acs.jpcb.6b10101
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851289249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851289249</sourcerecordid><originalsourceid>FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoVqt3T5KjB7cm2Y8kRy1VCy1e1nPIZie4Zbtpk12k_73ph95kGCYw7z0mP4TuKJlQwuiTNmGy2phqUlSUxDpDVzRnJInNz0_vgpJihK5DWBHCciaKSzRiXErKJb9Cy9JDVwfcdLj8dgnWXY3LLw-QvLh6h2fWgukP6-XQ9k0wugU8bYfQgw_YWTx3XWPwotkOTR1u0IXVbYDb0xyjz9dZOX1PFh9v8-nzItFZKvskT43RLCcSRMooaG2yrABuDddpmglpbFaJWhRSMMaBFhnhGSHWVlxWWtZ5OkYPx9yNd9sBQq_W8TRoW92BG4KiIqdMSJbJKCVHqfEuBA9WbXyz1n6nKFF7iCpCVHuI6gQxWu5P6UO1hvrP8EstCh6PgoPVDb6Ln_0_7wce_Xw7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851289249</pqid></control><display><type>article</type><title>Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Halat, Peter ; Seeger, Zoe L. ; Barrera Acevedo, Santiago ; Izgorodina, Ekaterina I.</creator><creatorcontrib>Halat, Peter ; Seeger, Zoe L. ; Barrera Acevedo, Santiago ; Izgorodina, Ekaterina I.</creatorcontrib><description>Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the accuracy of the method by accounting for all possible two-body and three-body interactions. In this work a comprehensive application of the FMO approach in combination with a second order of Møller–Plesset perturbation theory method, MP2, is presented for multiscale clusters of ionic liquids such as [C1mim]­X, [C1mpyr]­X, [C2py]­X, and [NMe4]­X, where X = chloride and tetrafluoroborates, BF4 –, with the clusters varying in size from 4, 8, 16, to 32 ion pairs. Reliable cutoff criteria for the inclusion of two-body and three-body interactions are identified for both HF energy and MP2 correlation energy to achieve the desired accuracy of 1 kJ mol–1. The importance of two-body and three-body interactions in ionic liquids is also discussed.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b10101</identifier><identifier>PMID: 27991797</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2017-01, Vol.121 (3), p.577-588</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53</citedby><cites>FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53</cites><orcidid>0000-0002-2506-4890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27991797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halat, Peter</creatorcontrib><creatorcontrib>Seeger, Zoe L.</creatorcontrib><creatorcontrib>Barrera Acevedo, Santiago</creatorcontrib><creatorcontrib>Izgorodina, Ekaterina I.</creatorcontrib><title>Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the accuracy of the method by accounting for all possible two-body and three-body interactions. In this work a comprehensive application of the FMO approach in combination with a second order of Møller–Plesset perturbation theory method, MP2, is presented for multiscale clusters of ionic liquids such as [C1mim]­X, [C1mpyr]­X, [C2py]­X, and [NMe4]­X, where X = chloride and tetrafluoroborates, BF4 –, with the clusters varying in size from 4, 8, 16, to 32 ion pairs. Reliable cutoff criteria for the inclusion of two-body and three-body interactions are identified for both HF energy and MP2 correlation energy to achieve the desired accuracy of 1 kJ mol–1. The importance of two-body and three-body interactions in ionic liquids is also discussed.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoVqt3T5KjB7cm2Y8kRy1VCy1e1nPIZie4Zbtpk12k_73ph95kGCYw7z0mP4TuKJlQwuiTNmGy2phqUlSUxDpDVzRnJInNz0_vgpJihK5DWBHCciaKSzRiXErKJb9Cy9JDVwfcdLj8dgnWXY3LLw-QvLh6h2fWgukP6-XQ9k0wugU8bYfQgw_YWTx3XWPwotkOTR1u0IXVbYDb0xyjz9dZOX1PFh9v8-nzItFZKvskT43RLCcSRMooaG2yrABuDddpmglpbFaJWhRSMMaBFhnhGSHWVlxWWtZ5OkYPx9yNd9sBQq_W8TRoW92BG4KiIqdMSJbJKCVHqfEuBA9WbXyz1n6nKFF7iCpCVHuI6gQxWu5P6UO1hvrP8EstCh6PgoPVDb6Ln_0_7wce_Xw7</recordid><startdate>20170126</startdate><enddate>20170126</enddate><creator>Halat, Peter</creator><creator>Seeger, Zoe L.</creator><creator>Barrera Acevedo, Santiago</creator><creator>Izgorodina, Ekaterina I.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2506-4890</orcidid></search><sort><creationdate>20170126</creationdate><title>Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids</title><author>Halat, Peter ; Seeger, Zoe L. ; Barrera Acevedo, Santiago ; Izgorodina, Ekaterina I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halat, Peter</creatorcontrib><creatorcontrib>Seeger, Zoe L.</creatorcontrib><creatorcontrib>Barrera Acevedo, Santiago</creatorcontrib><creatorcontrib>Izgorodina, Ekaterina I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halat, Peter</au><au>Seeger, Zoe L.</au><au>Barrera Acevedo, Santiago</au><au>Izgorodina, Ekaterina I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2017-01-26</date><risdate>2017</risdate><volume>121</volume><issue>3</issue><spage>577</spage><epage>588</epage><pages>577-588</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the accuracy of the method by accounting for all possible two-body and three-body interactions. In this work a comprehensive application of the FMO approach in combination with a second order of Møller–Plesset perturbation theory method, MP2, is presented for multiscale clusters of ionic liquids such as [C1mim]­X, [C1mpyr]­X, [C2py]­X, and [NMe4]­X, where X = chloride and tetrafluoroborates, BF4 –, with the clusters varying in size from 4, 8, 16, to 32 ion pairs. Reliable cutoff criteria for the inclusion of two-body and three-body interactions are identified for both HF energy and MP2 correlation energy to achieve the desired accuracy of 1 kJ mol–1. The importance of two-body and three-body interactions in ionic liquids is also discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27991797</pmid><doi>10.1021/acs.jpcb.6b10101</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2506-4890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2017-01, Vol.121 (3), p.577-588
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1851289249
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trends%20in%20Two-%20and%20Three-Body%20Effects%20in%20Multiscale%20Clusters%20of%20Ionic%20Liquids&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Halat,%20Peter&rft.date=2017-01-26&rft.volume=121&rft.issue=3&rft.spage=577&rft.epage=588&rft.pages=577-588&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b10101&rft_dat=%3Cproquest_cross%3E1851289249%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a439t-53cca2509e8321eaac446e7fc7a33489cf4b8d8698227e16407400ffb79ba9d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851289249&rft_id=info:pmid/27991797&rfr_iscdi=true