Loading…

Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent

Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better cap...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2017-09, Vol.33 (37), p.9254-9261
Main Authors: Nguyen, Cao Cuong, Seo, Daniel M, Chandrasiri, K. W. D. K, Lucht, Brett L
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23
cites cdi_FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23
container_end_page 9261
container_issue 37
container_start_page 9254
container_title Langmuir
container_volume 33
creator Nguyen, Cao Cuong
Seo, Daniel M
Chandrasiri, K. W. D. K
Lucht, Brett L
description Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly­(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.
doi_str_mv 10.1021/acs.langmuir.6b04310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851299011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851299011</sourcerecordid><originalsourceid>FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EgjL8AUJesknxFKdZVhVDJSYJWEfOy0vlKomLnSCVr8dRC0tW3pzzrHsIueRsypngNwbCtDHdqh2sn-qSKcnZAZnwVLAknYnskExYpmSSKS1PyGkIa8ZYLlV-TE5Eluda6HRC1st2490XVnSxhcZ2K_qKvna-NR0gdTU19M3SZ9O5jfG9hQbpvHMV0o_eNvZ7FBa29xboHGxFTRiFwdcGMHlyla23IzJfYdefk6PaNAEv9u8Z-bi7fV88JI8v98vF_DExcUKfCCHLWgLnZaoZZCoVElErUJDlM1CVFLxEKXSJwFQaUZMaw4Qqcw2gjZBn5Hp3Nw77HDD0RWsDYBNjoRtCwWcpF3nOOI-o2qHgXQge62LjbWv8tuCsGCsXsXLxW7nYV47a1f6HoWyx-pN-s0aA7YBRX7vBd3Hw_zd_AGxjjIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851299011</pqid></control><display><type>article</type><title>Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Nguyen, Cao Cuong ; Seo, Daniel M ; Chandrasiri, K. W. D. K ; Lucht, Brett L</creator><creatorcontrib>Nguyen, Cao Cuong ; Seo, Daniel M ; Chandrasiri, K. W. D. K ; Lucht, Brett L</creatorcontrib><description>Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly­(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b04310</identifier><identifier>PMID: 27996265</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-09, Vol.33 (37), p.9254-9261</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23</citedby><cites>FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27996265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Cao Cuong</creatorcontrib><creatorcontrib>Seo, Daniel M</creatorcontrib><creatorcontrib>Chandrasiri, K. W. D. K</creatorcontrib><creatorcontrib>Lucht, Brett L</creatorcontrib><title>Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly­(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EgjL8AUJesknxFKdZVhVDJSYJWEfOy0vlKomLnSCVr8dRC0tW3pzzrHsIueRsypngNwbCtDHdqh2sn-qSKcnZAZnwVLAknYnskExYpmSSKS1PyGkIa8ZYLlV-TE5Eluda6HRC1st2490XVnSxhcZ2K_qKvna-NR0gdTU19M3SZ9O5jfG9hQbpvHMV0o_eNvZ7FBa29xboHGxFTRiFwdcGMHlyla23IzJfYdefk6PaNAEv9u8Z-bi7fV88JI8v98vF_DExcUKfCCHLWgLnZaoZZCoVElErUJDlM1CVFLxEKXSJwFQaUZMaw4Qqcw2gjZBn5Hp3Nw77HDD0RWsDYBNjoRtCwWcpF3nOOI-o2qHgXQge62LjbWv8tuCsGCsXsXLxW7nYV47a1f6HoWyx-pN-s0aA7YBRX7vBd3Hw_zd_AGxjjIs</recordid><startdate>20170919</startdate><enddate>20170919</enddate><creator>Nguyen, Cao Cuong</creator><creator>Seo, Daniel M</creator><creator>Chandrasiri, K. W. D. K</creator><creator>Lucht, Brett L</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170919</creationdate><title>Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent</title><author>Nguyen, Cao Cuong ; Seo, Daniel M ; Chandrasiri, K. W. D. K ; Lucht, Brett L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Cao Cuong</creatorcontrib><creatorcontrib>Seo, Daniel M</creatorcontrib><creatorcontrib>Chandrasiri, K. W. D. K</creatorcontrib><creatorcontrib>Lucht, Brett L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Cao Cuong</au><au>Seo, Daniel M</au><au>Chandrasiri, K. W. D. K</au><au>Lucht, Brett L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-09-19</date><risdate>2017</risdate><volume>33</volume><issue>37</issue><spage>9254</spage><epage>9261</epage><pages>9254-9261</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Citric acid and its analogues have been investigated as surface-modifying agents for Si nanoparticle anodes using electrochemical cycling, attenuated total reflectance infrared (ATR IR), and X-ray photoelectron spectroscopy (XPS). A Si nanoparticle anode prepared with citric acid (CA) has better capacity retention than one containing 1,2,3,4-butanetetracarboxylic acid (BA), but both electrodes outperform Si-PVDF. The Si-CA anode has an initial specific capacity of 3530 mA h/g and a first cycle efficiency of 82%. Surprisingly, the Si-CA electrode maintains a high specific capacity of ∼2200 mA h/g after 250 cycles, corresponding to 64% capacity retention, which is similar to the Si prepared with long-chain poly­(acrylic acid) (PAA). On the contrary, the silicon electrode prepared with PVDF has a fast capacity fade and retains only 980 mA h/g after 50 cycles. The IR and XPS data show that the Si-CA electrode has an SEI composed primarily of lithium citrate during the first 50 cycles, resulting from the electrochemical reduction of citric acid. Only low concentrations of electrolyte reduction products are observed. The lithium citrate layer derived from CA stabilizes the silicon surface and suppresses electrolyte reduction, which likely contributes to the enhanced cycling performance of the Si nanoparticle anode.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27996265</pmid><doi>10.1021/acs.langmuir.6b04310</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-09, Vol.33 (37), p.9254-9261
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1851299011
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Improved Cycling Performance of a Si Nanoparticle Anode Utilizing Citric Acid as a Surface-Modifying Agent
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Cycling%20Performance%20of%20a%20Si%20Nanoparticle%20Anode%20Utilizing%20Citric%20Acid%20as%20a%20Surface-Modifying%20Agent&rft.jtitle=Langmuir&rft.au=Nguyen,%20Cao%20Cuong&rft.date=2017-09-19&rft.volume=33&rft.issue=37&rft.spage=9254&rft.epage=9261&rft.pages=9254-9261&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b04310&rft_dat=%3Cproquest_cross%3E1851299011%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a431t-223bf3c11b560c74523ee64c4c798c4d321be326bec045bf3a5aa024b96cc6a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851299011&rft_id=info:pmid/27996265&rfr_iscdi=true