Loading…
Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis
Increasing levels of energy consumption, dwindling resources, and environmental considerations have served as compelling motivations to explore renewable alternatives to petroleum-based fuels, including enzymatic routes for hydrocarbon synthesis. Phylogenetically diverse species have long been recog...
Saved in:
Published in: | Journal of biological inorganic chemistry 2017-04, Vol.22 (2-3), p.221-235 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasing levels of energy consumption, dwindling resources, and environmental considerations have served as compelling motivations to explore renewable alternatives to petroleum-based fuels, including enzymatic routes for hydrocarbon synthesis. Phylogenetically diverse species have long been recognized to produce hydrocarbons, but many of the enzymes responsible have been identified within the past decade. The enzymatic conversion of C
n
chain length fatty aldehydes (or acids) to C
n-1
hydrocarbons, alkanes or alkenes, involves a C–C scission reaction. Surprisingly, the enzymes involved in hydrocarbon synthesis utilize non-heme mononuclear iron, dinuclear iron, and thiolate-ligated heme cofactors that are most often associated with monooxygenation reactions. In this review, we examine the mechanisms of several enzymes involved in hydrocarbon biosynthesis, with specific emphasis on the structural and electronic changes that enable this functional switch.
Graphical abstract |
---|---|
ISSN: | 0949-8257 1432-1327 |
DOI: | 10.1007/s00775-016-1425-0 |