Loading…
Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies
Graphical abstract
Saved in:
Published in: | Computerized medical imaging and graphics 2017-09, Vol.60, p.3-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3 |
container_end_page | 10 |
container_issue | |
container_start_page | 3 |
container_title | Computerized medical imaging and graphics |
container_volume | 60 |
creator | Bi, Lei Kim, Jinman Kumar, Ashnil Wen, Lingfeng Feng, Dagan Fulham, Michael |
description | Graphical abstract |
doi_str_mv | 10.1016/j.compmedimag.2016.11.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852668766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611116301227</els_id><sourcerecordid>1852668766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3</originalsourceid><addsrcrecordid>eNqNUk1v1DAQtRCILoW_gIy4cEnw2LGdXJCqpR9IlUBiOVuJPWm9TeIQJ6D99zjdUqGe8MWj8Zs34_eGkHfAcmCgPu5zG_qxR-f7-ibnKZUD5IyVz8gGSl1lTGt4TjasrGSmAOCEvIpxzxjjTMNLcsJ1JaWuyg3Bs2UOfT17Sx3OaGcfBloPjtqujtG33tb3qdDSCW9SFNfw4vMlXca5vkPqB_r7NnSYNcEd6LfzXbbd0e7Qj7eJlsZ5cR7ja_KirbuIbx7uU_Lj4ny3vcquv15-2Z5dZ1YCzFkhmkbUqnC80VihqHTjnJNK2nRcoZnjSmLbWqFk0chCFyisKBiTVjJoUJySD0fecQo_F4yz6X202HX1gGGJBkrJlSq1Ugn6_gl0H5ZpSNMZzgQvFC-ZTqjqiLJTiHHC1oxTEn06GGBm9cLszT9emNULA2CSF6n27UOHpUnvj5V_xU-A7RGASZJfHicTrcfBJq4pOWFc8P_V5tMTFtv5IfnW3eEB4-OvwERumPm-LsW6E6AEA861-AM8GbVR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2032462807</pqid></control><display><type>article</type><title>Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bi, Lei ; Kim, Jinman ; Kumar, Ashnil ; Wen, Lingfeng ; Feng, Dagan ; Fulham, Michael</creator><creatorcontrib>Bi, Lei ; Kim, Jinman ; Kumar, Ashnil ; Wen, Lingfeng ; Feng, Dagan ; Fulham, Michael</creatorcontrib><description>Graphical abstract</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2016.11.008</identifier><identifier>PMID: 27955798</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Abnormalities ; Accuracy ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Artificial neural networks ; Bladder ; Brain ; Classification ; CNN ; Computed tomography ; Emission analysis ; Excretion ; Experiments ; Feature extraction ; Female ; Fluorodeoxyglucose F18 - metabolism ; Fragmentation ; Fragments ; Humans ; Identification methods ; Image classification ; Image detection ; Internal Medicine ; Kidneys ; Lesions ; Localization ; Lymphoma ; Lymphoma - diagnostic imaging ; Lymphoma - metabolism ; Machine Learning ; Male ; Medical imaging ; Middle Aged ; Multiscale analysis ; Neural networks ; Other ; PET-CT ; Positron emission ; Positron emission tomography ; Positron Emission Tomography Computed Tomography ; Radiopharmaceuticals - metabolism ; Thresholding ; Young Adult</subject><ispartof>Computerized medical imaging and graphics, 2017-09, Vol.60, p.3-10</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3</citedby><cites>FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27955798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Lei</creatorcontrib><creatorcontrib>Kim, Jinman</creatorcontrib><creatorcontrib>Kumar, Ashnil</creatorcontrib><creatorcontrib>Wen, Lingfeng</creatorcontrib><creatorcontrib>Feng, Dagan</creatorcontrib><creatorcontrib>Fulham, Michael</creatorcontrib><title>Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Graphical abstract</description><subject>Abnormalities</subject><subject>Accuracy</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Artificial neural networks</subject><subject>Bladder</subject><subject>Brain</subject><subject>Classification</subject><subject>CNN</subject><subject>Computed tomography</subject><subject>Emission analysis</subject><subject>Excretion</subject><subject>Experiments</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fluorodeoxyglucose F18 - metabolism</subject><subject>Fragmentation</subject><subject>Fragments</subject><subject>Humans</subject><subject>Identification methods</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Internal Medicine</subject><subject>Kidneys</subject><subject>Lesions</subject><subject>Localization</subject><subject>Lymphoma</subject><subject>Lymphoma - diagnostic imaging</subject><subject>Lymphoma - metabolism</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Multiscale analysis</subject><subject>Neural networks</subject><subject>Other</subject><subject>PET-CT</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Positron Emission Tomography Computed Tomography</subject><subject>Radiopharmaceuticals - metabolism</subject><subject>Thresholding</subject><subject>Young Adult</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUk1v1DAQtRCILoW_gIy4cEnw2LGdXJCqpR9IlUBiOVuJPWm9TeIQJ6D99zjdUqGe8MWj8Zs34_eGkHfAcmCgPu5zG_qxR-f7-ibnKZUD5IyVz8gGSl1lTGt4TjasrGSmAOCEvIpxzxjjTMNLcsJ1JaWuyg3Bs2UOfT17Sx3OaGcfBloPjtqujtG33tb3qdDSCW9SFNfw4vMlXca5vkPqB_r7NnSYNcEd6LfzXbbd0e7Qj7eJlsZ5cR7ja_KirbuIbx7uU_Lj4ny3vcquv15-2Z5dZ1YCzFkhmkbUqnC80VihqHTjnJNK2nRcoZnjSmLbWqFk0chCFyisKBiTVjJoUJySD0fecQo_F4yz6X202HX1gGGJBkrJlSq1Ugn6_gl0H5ZpSNMZzgQvFC-ZTqjqiLJTiHHC1oxTEn06GGBm9cLszT9emNULA2CSF6n27UOHpUnvj5V_xU-A7RGASZJfHicTrcfBJq4pOWFc8P_V5tMTFtv5IfnW3eEB4-OvwERumPm-LsW6E6AEA861-AM8GbVR</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bi, Lei</creator><creator>Kim, Jinman</creator><creator>Kumar, Ashnil</creator><creator>Wen, Lingfeng</creator><creator>Feng, Dagan</creator><creator>Fulham, Michael</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170901</creationdate><title>Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies</title><author>Bi, Lei ; Kim, Jinman ; Kumar, Ashnil ; Wen, Lingfeng ; Feng, Dagan ; Fulham, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abnormalities</topic><topic>Accuracy</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Artificial neural networks</topic><topic>Bladder</topic><topic>Brain</topic><topic>Classification</topic><topic>CNN</topic><topic>Computed tomography</topic><topic>Emission analysis</topic><topic>Excretion</topic><topic>Experiments</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fluorodeoxyglucose F18 - metabolism</topic><topic>Fragmentation</topic><topic>Fragments</topic><topic>Humans</topic><topic>Identification methods</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Internal Medicine</topic><topic>Kidneys</topic><topic>Lesions</topic><topic>Localization</topic><topic>Lymphoma</topic><topic>Lymphoma - diagnostic imaging</topic><topic>Lymphoma - metabolism</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Multiscale analysis</topic><topic>Neural networks</topic><topic>Other</topic><topic>PET-CT</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Positron Emission Tomography Computed Tomography</topic><topic>Radiopharmaceuticals - metabolism</topic><topic>Thresholding</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Lei</creatorcontrib><creatorcontrib>Kim, Jinman</creatorcontrib><creatorcontrib>Kumar, Ashnil</creatorcontrib><creatorcontrib>Wen, Lingfeng</creatorcontrib><creatorcontrib>Feng, Dagan</creatorcontrib><creatorcontrib>Fulham, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Lei</au><au>Kim, Jinman</au><au>Kumar, Ashnil</au><au>Wen, Lingfeng</au><au>Feng, Dagan</au><au>Fulham, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>60</volume><spage>3</spage><epage>10</epage><pages>3-10</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Graphical abstract</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27955798</pmid><doi>10.1016/j.compmedimag.2016.11.008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-6111 |
ispartof | Computerized medical imaging and graphics, 2017-09, Vol.60, p.3-10 |
issn | 0895-6111 1879-0771 |
language | eng |
recordid | cdi_proquest_miscellaneous_1852668766 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Abnormalities Accuracy Adolescent Adult Aged Aged, 80 and over Artificial neural networks Bladder Brain Classification CNN Computed tomography Emission analysis Excretion Experiments Feature extraction Female Fluorodeoxyglucose F18 - metabolism Fragmentation Fragments Humans Identification methods Image classification Image detection Internal Medicine Kidneys Lesions Localization Lymphoma Lymphoma - diagnostic imaging Lymphoma - metabolism Machine Learning Male Medical imaging Middle Aged Multiscale analysis Neural networks Other PET-CT Positron emission Positron emission tomography Positron Emission Tomography Computed Tomography Radiopharmaceuticals - metabolism Thresholding Young Adult |
title | Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20and%20classification%20of%20regions%20of%20FDG%20uptake%20in%20whole-body%20PET-CT%20lymphoma%20studies&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Bi,%20Lei&rft.date=2017-09-01&rft.volume=60&rft.spage=3&rft.epage=10&rft.pages=3-10&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2016.11.008&rft_dat=%3Cproquest_cross%3E1852668766%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-43bb3a64d2b7e9e397bddd565ccccd470d265effc3654b5474e3c34005c501be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2032462807&rft_id=info:pmid/27955798&rfr_iscdi=true |