Loading…

A Theoretical Investigation of the Structure and Optical Properties of a Silver Cluster in Solid Form and in Solution

Using density functional theory (DFT) and linear and quadratic response time-dependent DFT, we investigated the structure and optical properties of a silver sulfide cluster with the interesting property of dual emission that was observed when in crystal form but not in solution. Since the dual fluor...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-01, Vol.121 (1), p.326-333
Main Authors: Day, Paul N, Pachter, Ruth, Nguyen, Kiet A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using density functional theory (DFT) and linear and quadratic response time-dependent DFT, we investigated the structure and optical properties of a silver sulfide cluster with the interesting property of dual emission that was observed when in crystal form but not in solution. Since the dual fluorescence is observed only in the crystal, a supposition of stabilization of a higher-energy excited state by an excimer-like complex was analyzed by calculations for a cluster dimer, formed through π-stacking of aromatic groups bonded to the sulfur atoms. However, because of the complexity of the system, a simple one-dimensional method for dimer optimization, which works moderately well in predicting the red-shifted fluorescence compared to its absorption in a naphthalene dimer, predicts only partially the red shift for the emission energy. Interestingly, calculations of the two-photon absorption (TPA) cross-section on the optimized isolated cluster as well as the crystal structure geometry indicate significant off-resonance TPA. While some materials have significantly larger TPA cross-sections, such a TPA cross-section off-resonance could be useful. The high density of states in the dimer system results in a higher probability for significant resonance enhancement and thus much larger TPA cross-sections.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.6b10868