Loading…

Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage

Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn–Br2 RFBs, is limited due to a number of challenges related to materials,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-01, Vol.139 (3), p.1207-1214
Main Authors: Hu, Bo, DeBruler, Camden, Rhodes, Zayn, Liu, T. Leo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn–Br2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)­trimethylammonium chloride (FcNCl, 4.0 M in H2O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1-ferrocenylmethyl-N 1,N 1,N 2,N 2,N 2-pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H2O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm2. Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm2. These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b10984