Loading…
Exhaustive Qualitative LC-DAD-MSn Analysis of Arabica Green Coffee Beans: Cinnamoyl-glycosides and Cinnamoylshikimic Acids as New Polyphenols in Green Coffee
Coffee is one of the most consumed beverages in the world, due to its unique aroma and stimulant properties. Although its health effects are controversial, moderate intake seems to be beneficial. The present work deals with the characterization and quantification of polyphenols and methylxanthines i...
Saved in:
Published in: | Journal of agricultural and food chemistry 2016-12, Vol.64 (51), p.9663-9674 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coffee is one of the most consumed beverages in the world, due to its unique aroma and stimulant properties. Although its health effects are controversial, moderate intake seems to be beneficial. The present work deals with the characterization and quantification of polyphenols and methylxanthines in four Arabica green coffee beans from different geographical origins. The antioxidant activity was also evaluated. Forty-three polyphenols (cinnamic acid, cinnamoyl-amide, 5 cinammoyl-glycosides, and 36 cinnamate esters) were identified using LC-MSn. Among these, cinnamate esters of six different chemical groups (including two dimethoxycinnamoylquinic acid isomers, three caffeoyl-feruloylquinic acid isomers, caffeoyl-sinapoylquinic acid, p-coumaroyl-feruloylquinic acid, two caffeoylshikimic acid isomers, and trimethoxycinnamoylshikimic acid) in addition to five isomers of cinnamoyl-glycosides called caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosic acid (CDOA) are described for the first time in Arabica green coffee beans. Moreover, 38 polyphenols (6-7% w/w) and 2 methylxanthines (1.3% w/w) were quantified by HPLC-DAD. Caffeoylquinic was the most abundant group of compounds (up to 85.5%) followed by dicaffeoylquinic and feruloylquinic acids (up to 8 and 7%, respectively) and the newly identified cinnamoyl-glycosides (CDOA) (up to 2.5%). Caffeine was the main methylxanthine (99.8%), with minimal amounts of theobromine (0.2%). African coffees (from Kenya and Ethiopia) showed higher polyphenolic content than American beans (from Brazil and Colombia), whereas methylxanthine contents varied randomly. Both phenols and methylxanthines contributed to the antioxidant capacity associated with green coffee, with a higher contribution of polyphenols. We conclude that green coffee represents an important source of polyphenols and methylxanthines, with high antioxidant capacity. |
---|---|
ISSN: | 1520-5118 |
DOI: | 10.1021/acs.jafc.6b04022 |