Loading…

Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer

Four-dimensional printing, a new process to fabricate active materials through three-dimensional (3D) printing developed by MIT’s Self-Assembly Lab in 2014, has attracted more and more research and development interests recently. In this paper, a type of epoxy-acrylate hybrid photopolymer was synthe...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-01, Vol.9 (2), p.1820-1829
Main Authors: Yu, Ran, Yang, Xin, Zhang, Ying, Zhao, Xiaojuan, Wu, Xiao, Zhao, Tingting, Zhao, Yulei, Huang, Wei
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Four-dimensional printing, a new process to fabricate active materials through three-dimensional (3D) printing developed by MIT’s Self-Assembly Lab in 2014, has attracted more and more research and development interests recently. In this paper, a type of epoxy-acrylate hybrid photopolymer was synthesized and applied to fabricate shape memory polymers through a stereolithography 3D printing technique. The glass-to-rubbery modulus ratio of the printed sample determined by dynamic mechanical analysis is as high as 600, indicating that it may possess good shape memory properties. Fold-deploy and shape memory cycle tests were applied to evaluate its shape memory performance. The shape fixity ratio and the shape recovery ratio in ten cycles of fold-deploy tests are about 99 and 100%, respectively. The shape recovery process takes less than 20 s, indicating its rapid shape recovery rate. The shape fixity ratio and shape recovery ratio during 18 consecutive shape memory cycles are 97.44 ± 0.08 and 100.02 ± 0.05%, respectively, showing that the printed sample has high shape fixity ratio, shape recovery ratio, and excellent cycling stability. A tensile test at 62 °C demonstrates that the printed samples combine a relatively large break strain of 38% with a large recovery stress of 4.7 MPa. Besides, mechanical and thermal stability tests prove that the printed sample has good thermal stability and mechanical properties, including high strength and good toughness.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b13531