Loading…
Computational EEG modelling of decision making under ambiguity reveals spatio-temporal dynamics of outcome evaluation
•Complex human cognition is reflected in dynamic spatio-temporal activity.•We combined event-related potentials with computational modelling.•A general linear model created a three-dimensional map of neural dynamics. Complex human cognition, such as decision-making under ambiguity, is reflected in d...
Saved in:
Published in: | Behavioural brain research 2017-03, Vol.321, p.28-35 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3 |
container_end_page | 35 |
container_issue | |
container_start_page | 28 |
container_title | Behavioural brain research |
container_volume | 321 |
creator | Jollans, Lee Whelan, Robert Venables, Louise Turnbull, Oliver H. Cella, Matteo Dymond, Simon |
description | •Complex human cognition is reflected in dynamic spatio-temporal activity.•We combined event-related potentials with computational modelling.•A general linear model created a three-dimensional map of neural dynamics.
Complex human cognition, such as decision-making under ambiguity, is reflected in dynamic spatio-temporal activity in the brain. Here, we combined event-related potentials with computational modelling of the time course of decision-making and outcome evaluation during the Iowa Gambling Task. Measures of choice probability generated using the Prospect Valence Learning Delta (PVL-Delta) model, in addition to objective trial outcomes (outcome magnitude and valence), were applied as regressors in a general linear model of the EEG signal. The resulting three-dimensional spatio-temporal characterization of task-related neural dynamics demonstrated that outcome valence, outcome magnitude, and PVL-Delta choice probability were expressed in distinctly separate event related potentials. Our findings showed that the P3 component was associated with an experience-based measure of outcome expectancy. |
doi_str_mv | 10.1016/j.bbr.2016.12.033 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854615374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166432816313171</els_id><sourcerecordid>1854615374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxa0K1C5tPwAX5COXpP6XxBEntFpKpUpc4Gw59qTyEsfBjlfab4_DFo4cRh553vuN5iH0npKaEto-HOthiDUrbU1ZTTi_QjsqO1Z1jejfoF0ZtJXgTN6gdykdCSGCNPQa3TBJuCi1Q3kf_JJXvbow6wkfDo_YBwvT5OYXHEZswbhUZtjrn9tXni1ErP3gXrJbzzjCCfSUcFo2RLWCX0IsIHuetXcmbYyQVxM8YDjpKf_ZdIfejsUF96_vLfrx5fB9_7V6_vb4tP_8XBnet2vFOGe6tdB2hPc9o11HhRWEaj42IHuQIAQXHRkHyVohBbNDz4bRajbIngjNb9HHC3eJ4VeGtCrvkinX6RlCTorKRrS04Z0oUnqRmhhSijCqJTqv41lRora01VGVtNWWtqJMlbSL58MrPg8e7D_H33iL4NNFAOXIk4OoknEwG7AuglmVDe4_-N8crJEK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854615374</pqid></control><display><type>article</type><title>Computational EEG modelling of decision making under ambiguity reveals spatio-temporal dynamics of outcome evaluation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jollans, Lee ; Whelan, Robert ; Venables, Louise ; Turnbull, Oliver H. ; Cella, Matteo ; Dymond, Simon</creator><creatorcontrib>Jollans, Lee ; Whelan, Robert ; Venables, Louise ; Turnbull, Oliver H. ; Cella, Matteo ; Dymond, Simon</creatorcontrib><description>•Complex human cognition is reflected in dynamic spatio-temporal activity.•We combined event-related potentials with computational modelling.•A general linear model created a three-dimensional map of neural dynamics.
Complex human cognition, such as decision-making under ambiguity, is reflected in dynamic spatio-temporal activity in the brain. Here, we combined event-related potentials with computational modelling of the time course of decision-making and outcome evaluation during the Iowa Gambling Task. Measures of choice probability generated using the Prospect Valence Learning Delta (PVL-Delta) model, in addition to objective trial outcomes (outcome magnitude and valence), were applied as regressors in a general linear model of the EEG signal. The resulting three-dimensional spatio-temporal characterization of task-related neural dynamics demonstrated that outcome valence, outcome magnitude, and PVL-Delta choice probability were expressed in distinctly separate event related potentials. Our findings showed that the P3 component was associated with an experience-based measure of outcome expectancy.</description><identifier>ISSN: 0166-4328</identifier><identifier>EISSN: 1872-7549</identifier><identifier>DOI: 10.1016/j.bbr.2016.12.033</identifier><identifier>PMID: 28034803</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adult ; Analysis of Variance ; Brain - physiology ; Computational models ; Computer Simulation ; Decision making ; Decision Making - physiology ; EEG ; Electroencephalography ; Evoked Potentials ; Female ; Gambling - physiopathology ; Humans ; Iowa gambling task ; Linear Models ; Male ; Models, Neurological ; Neuropsychological Tests ; Probability ; Time Factors ; Young Adult</subject><ispartof>Behavioural brain research, 2017-03, Vol.321, p.28-35</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3</citedby><cites>FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28034803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jollans, Lee</creatorcontrib><creatorcontrib>Whelan, Robert</creatorcontrib><creatorcontrib>Venables, Louise</creatorcontrib><creatorcontrib>Turnbull, Oliver H.</creatorcontrib><creatorcontrib>Cella, Matteo</creatorcontrib><creatorcontrib>Dymond, Simon</creatorcontrib><title>Computational EEG modelling of decision making under ambiguity reveals spatio-temporal dynamics of outcome evaluation</title><title>Behavioural brain research</title><addtitle>Behav Brain Res</addtitle><description>•Complex human cognition is reflected in dynamic spatio-temporal activity.•We combined event-related potentials with computational modelling.•A general linear model created a three-dimensional map of neural dynamics.
Complex human cognition, such as decision-making under ambiguity, is reflected in dynamic spatio-temporal activity in the brain. Here, we combined event-related potentials with computational modelling of the time course of decision-making and outcome evaluation during the Iowa Gambling Task. Measures of choice probability generated using the Prospect Valence Learning Delta (PVL-Delta) model, in addition to objective trial outcomes (outcome magnitude and valence), were applied as regressors in a general linear model of the EEG signal. The resulting three-dimensional spatio-temporal characterization of task-related neural dynamics demonstrated that outcome valence, outcome magnitude, and PVL-Delta choice probability were expressed in distinctly separate event related potentials. Our findings showed that the P3 component was associated with an experience-based measure of outcome expectancy.</description><subject>Adult</subject><subject>Analysis of Variance</subject><subject>Brain - physiology</subject><subject>Computational models</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Decision Making - physiology</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Evoked Potentials</subject><subject>Female</subject><subject>Gambling - physiopathology</subject><subject>Humans</subject><subject>Iowa gambling task</subject><subject>Linear Models</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neuropsychological Tests</subject><subject>Probability</subject><subject>Time Factors</subject><subject>Young Adult</subject><issn>0166-4328</issn><issn>1872-7549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9v1DAQxa0K1C5tPwAX5COXpP6XxBEntFpKpUpc4Gw59qTyEsfBjlfab4_DFo4cRh553vuN5iH0npKaEto-HOthiDUrbU1ZTTi_QjsqO1Z1jejfoF0ZtJXgTN6gdykdCSGCNPQa3TBJuCi1Q3kf_JJXvbow6wkfDo_YBwvT5OYXHEZswbhUZtjrn9tXni1ErP3gXrJbzzjCCfSUcFo2RLWCX0IsIHuetXcmbYyQVxM8YDjpKf_ZdIfejsUF96_vLfrx5fB9_7V6_vb4tP_8XBnet2vFOGe6tdB2hPc9o11HhRWEaj42IHuQIAQXHRkHyVohBbNDz4bRajbIngjNb9HHC3eJ4VeGtCrvkinX6RlCTorKRrS04Z0oUnqRmhhSijCqJTqv41lRora01VGVtNWWtqJMlbSL58MrPg8e7D_H33iL4NNFAOXIk4OoknEwG7AuglmVDe4_-N8crJEK</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Jollans, Lee</creator><creator>Whelan, Robert</creator><creator>Venables, Louise</creator><creator>Turnbull, Oliver H.</creator><creator>Cella, Matteo</creator><creator>Dymond, Simon</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170315</creationdate><title>Computational EEG modelling of decision making under ambiguity reveals spatio-temporal dynamics of outcome evaluation</title><author>Jollans, Lee ; Whelan, Robert ; Venables, Louise ; Turnbull, Oliver H. ; Cella, Matteo ; Dymond, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Analysis of Variance</topic><topic>Brain - physiology</topic><topic>Computational models</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Decision Making - physiology</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Evoked Potentials</topic><topic>Female</topic><topic>Gambling - physiopathology</topic><topic>Humans</topic><topic>Iowa gambling task</topic><topic>Linear Models</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neuropsychological Tests</topic><topic>Probability</topic><topic>Time Factors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jollans, Lee</creatorcontrib><creatorcontrib>Whelan, Robert</creatorcontrib><creatorcontrib>Venables, Louise</creatorcontrib><creatorcontrib>Turnbull, Oliver H.</creatorcontrib><creatorcontrib>Cella, Matteo</creatorcontrib><creatorcontrib>Dymond, Simon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Behavioural brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jollans, Lee</au><au>Whelan, Robert</au><au>Venables, Louise</au><au>Turnbull, Oliver H.</au><au>Cella, Matteo</au><au>Dymond, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational EEG modelling of decision making under ambiguity reveals spatio-temporal dynamics of outcome evaluation</atitle><jtitle>Behavioural brain research</jtitle><addtitle>Behav Brain Res</addtitle><date>2017-03-15</date><risdate>2017</risdate><volume>321</volume><spage>28</spage><epage>35</epage><pages>28-35</pages><issn>0166-4328</issn><eissn>1872-7549</eissn><abstract>•Complex human cognition is reflected in dynamic spatio-temporal activity.•We combined event-related potentials with computational modelling.•A general linear model created a three-dimensional map of neural dynamics.
Complex human cognition, such as decision-making under ambiguity, is reflected in dynamic spatio-temporal activity in the brain. Here, we combined event-related potentials with computational modelling of the time course of decision-making and outcome evaluation during the Iowa Gambling Task. Measures of choice probability generated using the Prospect Valence Learning Delta (PVL-Delta) model, in addition to objective trial outcomes (outcome magnitude and valence), were applied as regressors in a general linear model of the EEG signal. The resulting three-dimensional spatio-temporal characterization of task-related neural dynamics demonstrated that outcome valence, outcome magnitude, and PVL-Delta choice probability were expressed in distinctly separate event related potentials. Our findings showed that the P3 component was associated with an experience-based measure of outcome expectancy.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28034803</pmid><doi>10.1016/j.bbr.2016.12.033</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-4328 |
ispartof | Behavioural brain research, 2017-03, Vol.321, p.28-35 |
issn | 0166-4328 1872-7549 |
language | eng |
recordid | cdi_proquest_miscellaneous_1854615374 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adult Analysis of Variance Brain - physiology Computational models Computer Simulation Decision making Decision Making - physiology EEG Electroencephalography Evoked Potentials Female Gambling - physiopathology Humans Iowa gambling task Linear Models Male Models, Neurological Neuropsychological Tests Probability Time Factors Young Adult |
title | Computational EEG modelling of decision making under ambiguity reveals spatio-temporal dynamics of outcome evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20EEG%20modelling%20of%20decision%20making%20under%20ambiguity%20reveals%20spatio-temporal%20dynamics%20of%20outcome%20evaluation&rft.jtitle=Behavioural%20brain%20research&rft.au=Jollans,%20Lee&rft.date=2017-03-15&rft.volume=321&rft.spage=28&rft.epage=35&rft.pages=28-35&rft.issn=0166-4328&rft.eissn=1872-7549&rft_id=info:doi/10.1016/j.bbr.2016.12.033&rft_dat=%3Cproquest_cross%3E1854615374%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-2332a6de670399217714d401a3f5e89e8e443470fb8264842db92bfda2b8904a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1854615374&rft_id=info:pmid/28034803&rfr_iscdi=true |