Loading…
Cyanobacteria assisted biosynthesis of silver nanoparticles—a potential antileukemic agent
Recently, silver nanoparticles (SNPs) have received much attention in nanooncology due to their unique therapeutic properties. The aim of this study was to determine the anticancer activity of biosynthesized SNPs against blood cancer along with their antibacterial property. Here, the cyanobacterial...
Saved in:
Published in: | Journal of applied phycology 2016-12, Vol.28 (6), p.3387-3394 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, silver nanoparticles (SNPs) have received much attention in nanooncology due to their unique therapeutic properties. The aim of this study was to determine the anticancer activity of biosynthesized SNPs against blood cancer along with their antibacterial property. Here, the cyanobacterial strain, Lyngbya majuscula, was used as successful bio-reagent for SNP production. The healthy growing trichomes were exposed to 9 mM silver nitrate solution in the dark for nanosilver production. The synthesized particles were tested for their nanostructure using UV–vis spectroscopy (absorption maxima at 415 nm) and other methods. Presence of elemental silver and the crystallographic nature of the particles were confirmed by EDAX analysis and XRD, respectively. The surface topography, size, and shape of SNPs were determined by AFM and TEM studies. Smooth-surfaced spherical shaped particles with an ∼20–50-nm size range were produced. The average hydrodynamic diameter and zeta potential value of the produced SNPs were 149 nm and −35.2 mV, respectively, indicating high stability of the particles. The fully characterized SNPs were then tested for their effectiveness as antibacterial agents against the Gram-negative bacterium Pseudomonas aeruginosa. The antiproliferative activity of SNP was also screened against three leukemic cell lines (K562, MOLT-3, and REH) through MTT assay. The SNP synthesized by L. majuscula showed dose- and time-dependent anticancer activity in REH cells. DAPI staining clearly revealed the fragmentation of nuclei of cancer cells due to SNP treatment. Data taken together showed that biosynthesis of SNP aided by L. majuscula enhanced the antiproliferative activity of leukemic cells as well as the antibacterial activity against P. aeruginosa. |
---|---|
ISSN: | 0921-8971 1573-5176 |
DOI: | 10.1007/s10811-016-0852-1 |