Loading…

Relaxation pathways of the OD stretch fundamental of HOD in liquid H2O

The molecular dynamics with quantum transitions method is used to study the vibrational relaxation of the OD stretching mode of HOD dissolved in liquid H2O water at 303 K. All the vibrational modes of the solute and solvent molecules that participate in the relaxation process are described by quantu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2016-12, Vol.145 (24), p.244502-244502
Main Authors: Miguel, Beatriz, Zúñiga, José, Requena, Alberto, Bastida, Adolfo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The molecular dynamics with quantum transitions method is used to study the vibrational relaxation of the OD stretching mode of HOD dissolved in liquid H2O water at 303 K. All the vibrational modes of the solute and solvent molecules that participate in the relaxation process are described by quantum mechanics, while the rotational and translational degrees of freedom are treated classically. A modification of the water intramolecular SPC/E (Simple Point Charge/Extended) force field providing vibrational frequencies in solution closer to the experimental values is proposed to analyze the influence of the vibrational energy gaps on the relaxation channels. The relaxation times obtained are in satisfactory agreement with experimental values. The energy transfer during the relaxation process alters significantly the H-bond network around the HOD molecule. The analysis of the vibrational transitions during the relaxation process reveals a complex mechanism which involves the participation of both intra- and intermolecular channels and provides a compromise for the different interpretations of the experimental data reported for this system in recent years.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4972128