Loading…

A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network

This paper presents a new adaptive sliding mode control approach for the synchronization of the uncertain fractional-order chaotic systems. A self-structuring hierarchical type-2 fuzzy neural network (SHT2FNN) is proposed for estimation of uncertainties. Also the switching control action in the conv...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2016-05, Vol.191, p.200-213
Main Authors: Mohammadzadeh, A., Ghaemi, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3
cites cdi_FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3
container_end_page 213
container_issue
container_start_page 200
container_title Neurocomputing (Amsterdam)
container_volume 191
creator Mohammadzadeh, A.
Ghaemi, S.
description This paper presents a new adaptive sliding mode control approach for the synchronization of the uncertain fractional-order chaotic systems. A self-structuring hierarchical type-2 fuzzy neural network (SHT2FNN) is proposed for estimation of uncertainties. Also the switching control action in the conventional sliding mode scheme is replaced by combination type-2 fuzzy neural network (T2FNN) with hyperbolic tangent function. In SHT2FNN, the number of rules is determined by a proposed algorithm. Adaptation laws of all trainable parameters of T2FNN and the consequent parameters of SHT2FNN, are derived based on Lyapunov stability analysis. The simulation results on two kind systems: Genio-Tesi and Coullet System and fractional-order hyper-chaotic Lorenz system, confirm the efficacy of the proposed scheme in synchronization of the uncertain fractional-order hyperchaotic and fractional-order chaotic systems. The proposed controller is robust against the approximation error and external disturbance. The proposed self-structuring algorithm in this paper is simple and it can be applied in the high dimensional problems. Furthermore, the proposed algorithm can delete unimportant rules. Adjusting the structure of the T2FNN in the hierarchical form ensures that the estimation error is very small so it can be negligible. Furthermore, the proposed strategy guarantees the robustness of controller.
doi_str_mv 10.1016/j.neucom.2015.12.098
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855352223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231216000813</els_id><sourcerecordid>1805506976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3</originalsourceid><addsrcrecordid>eNqNkc2O1DAQhC0EEsPCG3DwkUuy_p04F6TVij9pJS5wthy7TTwk8WA7rDLPxEPiaPaMOLW7VF9J7kLoLSUtJfR4e2oXWG2cW0aobClrSa-eoQNVHWsUU8fn6EB6JhvGKXuJXuV8IoR2lPUH9OcOz9EFH8DhPAUXlh-7ANiczykaO2IfE87bYscUl3AxJcQFR499MnZ_m6mJyUHCdjSxBHs7bmdIT0sFc4E542HDa96zF3jEGSbf5JJWW9a0i2OAZCoTrJlwqXzDsF8vl63a11S1BcpjTD9foxfeTBnePM0b9P3jh2_3n5uHr5--3N89NJZ3rDQglBKSUjIISYD6fpDSdYJ3RnRGMkqU5N4Qw6nl3oERXpmeD4Pgou-ccPwGvbvm1hP8WiEXPYdsYZrMAnHNmiopuWSM8f-wEinJse-O1SquVptizgm8Pqcwm7RpSvTeoz7pa49671FTpmuPFXt_xaD--He9lM42wGLBhQS2aBfDvwP-Aoy8rTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805506976</pqid></control><display><type>article</type><title>A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Mohammadzadeh, A. ; Ghaemi, S.</creator><creatorcontrib>Mohammadzadeh, A. ; Ghaemi, S.</creatorcontrib><description>This paper presents a new adaptive sliding mode control approach for the synchronization of the uncertain fractional-order chaotic systems. A self-structuring hierarchical type-2 fuzzy neural network (SHT2FNN) is proposed for estimation of uncertainties. Also the switching control action in the conventional sliding mode scheme is replaced by combination type-2 fuzzy neural network (T2FNN) with hyperbolic tangent function. In SHT2FNN, the number of rules is determined by a proposed algorithm. Adaptation laws of all trainable parameters of T2FNN and the consequent parameters of SHT2FNN, are derived based on Lyapunov stability analysis. The simulation results on two kind systems: Genio-Tesi and Coullet System and fractional-order hyper-chaotic Lorenz system, confirm the efficacy of the proposed scheme in synchronization of the uncertain fractional-order hyperchaotic and fractional-order chaotic systems. The proposed controller is robust against the approximation error and external disturbance. The proposed self-structuring algorithm in this paper is simple and it can be applied in the high dimensional problems. Furthermore, the proposed algorithm can delete unimportant rules. Adjusting the structure of the T2FNN in the hierarchical form ensures that the estimation error is very small so it can be negligible. Furthermore, the proposed strategy guarantees the robustness of controller.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2015.12.098</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Adaptive sliding mode control ; Algorithms ; Artificial neural networks ; Chaos theory ; Chaotic systems ; Fractional-order ; Fuzzy logic ; Hierarchical type-2 fuzzy neural network ; Hyperchaotic systems ; Networks ; Self-structuring algorithm ; Switching theory ; Synchronism ; Synchronization</subject><ispartof>Neurocomputing (Amsterdam), 2016-05, Vol.191, p.200-213</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3</citedby><cites>FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mohammadzadeh, A.</creatorcontrib><creatorcontrib>Ghaemi, S.</creatorcontrib><title>A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network</title><title>Neurocomputing (Amsterdam)</title><description>This paper presents a new adaptive sliding mode control approach for the synchronization of the uncertain fractional-order chaotic systems. A self-structuring hierarchical type-2 fuzzy neural network (SHT2FNN) is proposed for estimation of uncertainties. Also the switching control action in the conventional sliding mode scheme is replaced by combination type-2 fuzzy neural network (T2FNN) with hyperbolic tangent function. In SHT2FNN, the number of rules is determined by a proposed algorithm. Adaptation laws of all trainable parameters of T2FNN and the consequent parameters of SHT2FNN, are derived based on Lyapunov stability analysis. The simulation results on two kind systems: Genio-Tesi and Coullet System and fractional-order hyper-chaotic Lorenz system, confirm the efficacy of the proposed scheme in synchronization of the uncertain fractional-order hyperchaotic and fractional-order chaotic systems. The proposed controller is robust against the approximation error and external disturbance. The proposed self-structuring algorithm in this paper is simple and it can be applied in the high dimensional problems. Furthermore, the proposed algorithm can delete unimportant rules. Adjusting the structure of the T2FNN in the hierarchical form ensures that the estimation error is very small so it can be negligible. Furthermore, the proposed strategy guarantees the robustness of controller.</description><subject>Adaptive sliding mode control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chaos theory</subject><subject>Chaotic systems</subject><subject>Fractional-order</subject><subject>Fuzzy logic</subject><subject>Hierarchical type-2 fuzzy neural network</subject><subject>Hyperchaotic systems</subject><subject>Networks</subject><subject>Self-structuring algorithm</subject><subject>Switching theory</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O1DAQhC0EEsPCG3DwkUuy_p04F6TVij9pJS5wthy7TTwk8WA7rDLPxEPiaPaMOLW7VF9J7kLoLSUtJfR4e2oXWG2cW0aobClrSa-eoQNVHWsUU8fn6EB6JhvGKXuJXuV8IoR2lPUH9OcOz9EFH8DhPAUXlh-7ANiczykaO2IfE87bYscUl3AxJcQFR499MnZ_m6mJyUHCdjSxBHs7bmdIT0sFc4E542HDa96zF3jEGSbf5JJWW9a0i2OAZCoTrJlwqXzDsF8vl63a11S1BcpjTD9foxfeTBnePM0b9P3jh2_3n5uHr5--3N89NJZ3rDQglBKSUjIISYD6fpDSdYJ3RnRGMkqU5N4Qw6nl3oERXpmeD4Pgou-ccPwGvbvm1hP8WiEXPYdsYZrMAnHNmiopuWSM8f-wEinJse-O1SquVptizgm8Pqcwm7RpSvTeoz7pa49671FTpmuPFXt_xaD--He9lM42wGLBhQS2aBfDvwP-Aoy8rTg</recordid><startdate>20160526</startdate><enddate>20160526</enddate><creator>Mohammadzadeh, A.</creator><creator>Ghaemi, S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160526</creationdate><title>A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network</title><author>Mohammadzadeh, A. ; Ghaemi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive sliding mode control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chaos theory</topic><topic>Chaotic systems</topic><topic>Fractional-order</topic><topic>Fuzzy logic</topic><topic>Hierarchical type-2 fuzzy neural network</topic><topic>Hyperchaotic systems</topic><topic>Networks</topic><topic>Self-structuring algorithm</topic><topic>Switching theory</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadzadeh, A.</creatorcontrib><creatorcontrib>Ghaemi, S.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadzadeh, A.</au><au>Ghaemi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-05-26</date><risdate>2016</risdate><volume>191</volume><spage>200</spage><epage>213</epage><pages>200-213</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper presents a new adaptive sliding mode control approach for the synchronization of the uncertain fractional-order chaotic systems. A self-structuring hierarchical type-2 fuzzy neural network (SHT2FNN) is proposed for estimation of uncertainties. Also the switching control action in the conventional sliding mode scheme is replaced by combination type-2 fuzzy neural network (T2FNN) with hyperbolic tangent function. In SHT2FNN, the number of rules is determined by a proposed algorithm. Adaptation laws of all trainable parameters of T2FNN and the consequent parameters of SHT2FNN, are derived based on Lyapunov stability analysis. The simulation results on two kind systems: Genio-Tesi and Coullet System and fractional-order hyper-chaotic Lorenz system, confirm the efficacy of the proposed scheme in synchronization of the uncertain fractional-order hyperchaotic and fractional-order chaotic systems. The proposed controller is robust against the approximation error and external disturbance. The proposed self-structuring algorithm in this paper is simple and it can be applied in the high dimensional problems. Furthermore, the proposed algorithm can delete unimportant rules. Adjusting the structure of the T2FNN in the hierarchical form ensures that the estimation error is very small so it can be negligible. Furthermore, the proposed strategy guarantees the robustness of controller.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2015.12.098</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2016-05, Vol.191, p.200-213
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1855352223
source ScienceDirect Freedom Collection 2022-2024
subjects Adaptive sliding mode control
Algorithms
Artificial neural networks
Chaos theory
Chaotic systems
Fractional-order
Fuzzy logic
Hierarchical type-2 fuzzy neural network
Hyperchaotic systems
Networks
Self-structuring algorithm
Switching theory
Synchronism
Synchronization
title A modified sliding mode approach for synchronization of fractional-order chaotic/hyperchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modified%20sliding%20mode%20approach%20for%20synchronization%20of%20fractional-order%20chaotic/hyperchaotic%20systems%20by%20using%20new%20self-structuring%20hierarchical%20type-2%20fuzzy%20neural%20network&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Mohammadzadeh,%20A.&rft.date=2016-05-26&rft.volume=191&rft.spage=200&rft.epage=213&rft.pages=200-213&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2015.12.098&rft_dat=%3Cproquest_cross%3E1805506976%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-e48845110b450e1f9b55d7437a47a5210853fa0a31c3fdea4f8a93bb43497d4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1805506976&rft_id=info:pmid/&rfr_iscdi=true