Loading…
Roles of deep and shallow convection and microphysics in the MJO simulated by the Model for Prediction Across Scales
The November event of the Madden‐Julian oscillation (MJO) during the Dynamics of North Atlantic Models (DYNAMO) field campaign was simulated using the global compressible nonhydrostatic Model for Prediction Across Scales with global coarse (60 and 15 km) and regional (the Indian Ocean) cloud‐permitt...
Saved in:
Published in: | Journal of geophysical research. Atmospheres 2016-09, Vol.121 (18), p.10,575-10,600 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The November event of the Madden‐Julian oscillation (MJO) during the Dynamics of North Atlantic Models (DYNAMO) field campaign was simulated using the global compressible nonhydrostatic Model for Prediction Across Scales with global coarse (60 and 15 km) and regional (the Indian Ocean) cloud‐permitting (3 km) meshes. The purpose of this study is to compare roles of parameterized deep and shallow cumulus and microphysics in MJO simulations. Two cumulus schemes were used: Tiedtke and Grell‐Freitas. The deep and shallow components of Tiedtke scheme can be turned on and off individually. The results reveal that microphysics alone (without cumulus parameterization) is able to produce strong signals of the MJO in precipitation with 3 km mesh and weak MJO signals with 15 km mesh. A shallow scheme (Tiedtke) along with microphysics strengthens the MJO signals but makes them less well organized on large scales. A deep cumulus scheme can either improve the large‐scale organization of MJO precipitation produced by microphysics and shallow convection (Tiedtke) or impair them (Grell‐Freitas). The deep scheme of Tiedtke cannot reproduce the MJO well without its shallow counterpart. The main role of shallow convection in the model is to transport moisture upward to the lower to middle troposphere. By doing so, it removes dry biases in the lower to middle troposphere, a distinct feature in simulations with weak or no MJO signals, and enhances total precipitation and diabatic heating produced by microphysics and deep cumulus schemes. Changing model grid spacing from 60 to 15 km makes a little difference in the model fidelity of reproducing the MJO. All roles of shallow convection in 15 km simulations with parameterized deep convection cannot be reproduced in 3 km simulations without parameterized deep convection. Results from this study suggest that we should pay more attention to the treatment of shallow convection and its connection to other parameterized processes for improving MJO simulations. In other words, a holistic approach should be taken that consider parameterization of shallow cumulus, microphysics, boundary layer, and deep cumulus as a whole for model improvement.
Key Points
Shallow convection schemes enhance and modulate strength and timing of MJO signals
Shallow convection schemes moisten low to middle troposphere, necessary background for the MJO
Microphysics only reproduces large‐scale organization of MJO |
---|---|
ISSN: | 2169-897X 2169-8996 |
DOI: | 10.1002/2015JD024697 |